Patents by Inventor Jason Millard

Jason Millard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9560596
    Abstract: This disclosure relates to adaptively reducing the peak power of harmonic distortions as a function of the operating conditions for transmission communications. Specifically, the bias of the amplifier is adaptively increased to reduce harmonic distortions when a small fraction of the resource blocks are active.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 31, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Jason Millard, Arthur Nguyen
  • Patent number: 9197182
    Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: November 24, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Brian Baxter, Jason Millard, Roman Zbigniew Arkiszewski, Steven Selby
  • Patent number: 9031522
    Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: May 12, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Brian Baxter, Jason Millard, Roman Zbigniew Arkiszewski, Steven Selby
  • Patent number: 9020452
    Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: April 28, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Brian Baxter, Jason Millard, Roman Zbigniew Arkiszewski, Steven Selby
  • Patent number: 8712349
    Abstract: A power amplifier (PA) envelope power supply and a process to select a converter operating mode of the PA envelope power supply are disclosed. The PA envelope power supply operates in one of a first converter operating mode and a second converter operating mode. The process for selecting the converter operating mode is based on a selected communications mode of a radio frequency (RF) communications system, a target output power from RF PA circuitry of the RF communications system, and a direct current (DC) power supply voltage.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: April 29, 2014
    Assignee: RF Micro Devices, Inc.
    Inventors: William David Southcombe, Jason Millard, Chris Levesque, Brian Baxter, Roman Zbigniew Arkiszewski, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20130344828
    Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 26, 2013
    Applicant: RF Micro Devices, Inc.
    Inventors: Brian Baxter, Jason Millard, Roman Zbigniew Arkiszewski, Steven Selby
  • Publication number: 20130344833
    Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 26, 2013
    Applicant: RF Micro Devices, Inc
    Inventors: Brian Baxter, Jason Millard, Roman Zbigniew Arkiszewski, Steven Selby
  • Publication number: 20130342270
    Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 26, 2013
    Applicant: RF Micro Devices, Inc.
    Inventors: Brian Baxter, Jason Millard, Roman Zbigniew Arkiszewski, Steven Selby
  • Patent number: 8548398
    Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: October 1, 2013
    Assignee: RF Micro Devices, Inc.
    Inventors: Brian Baxter, Jason Millard, Roman Zbigniew Arkiszewski, Steven Selby
  • Publication number: 20130064144
    Abstract: This disclosure relates to adaptively reducing the peak power of harmonic distortions as a function of the operating conditions for transmission communications. Specifically, the bias of the amplifier is adaptively increased to reduce harmonic distortions when a small fraction of the resource blocks are active.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 14, 2013
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Jason Millard, Arthur Nguyen
  • Publication number: 20120299646
    Abstract: A power amplifier (PA) envelope power supply and a process to select a converter operating mode of the PA envelope power supply are disclosed. The PA envelope power supply operates in one of a first converter operating mode and a second converter operating mode. The process for selecting the converter operating mode is based on a selected communications mode of a radio frequency (RF) communications system, a target output power from RF PA circuitry of the RF communications system, and a direct current (DC) power supply voltage.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 29, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: William David Southcombe, Jason Millard, Chris Levesque, Brian Baxter, Roman Zbigniew Arkiszewski, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20120034893
    Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.
    Type: Application
    Filed: February 1, 2011
    Publication date: February 9, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Brian Baxter, Jason Millard, Roman Zbigniew Arkiszewski, Steven Selby
  • Publication number: 20060128325
    Abstract: A low-noise switching voltage regulator for supplying a voltage to a radio frequency (RF) power amplifier is disclosed. In one embodiment, the invention can be conceptualized as a power amplifier supply circuit, comprising a pair of oppositely polarized semiconductor switches, and a data formatter configured to supply a data stream having a voltage transition on at least every other bit to each of the pair of oppositely polarized semiconductor switches.
    Type: Application
    Filed: February 1, 2006
    Publication date: June 15, 2006
    Inventors: Chris Levesque, Jaleh Komaili, Jason Millard
  • Publication number: 20060035620
    Abstract: An adaptive band-pass filter for a wireless receiver comprises a band-pass filter associated with the receiver, the band-pass filter configured to selectively filter the received signal, and a switch responsive to a control signal, the switch configured to control the band-pass filter based on a level of the received signal.
    Type: Application
    Filed: August 12, 2004
    Publication date: February 16, 2006
    Inventors: Jason Millard, William Domino, James Snider
  • Publication number: 20050104657
    Abstract: A power control loop for a power amplifier is disclosed. Embodiments of the power control loop include deriving a secondary control signal. The secondary control signal may be used to control a gain applied to the power signal in the power control loop and to control a supply current or voltage delivered to a power amplifier.
    Type: Application
    Filed: November 13, 2003
    Publication date: May 19, 2005
    Inventors: James Snider, Jason Millard