Patents by Inventor Jason Mitchell

Jason Mitchell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11027362
    Abstract: A system and method to correct for height error during a robotic additive manufacturing process. One or both of an output current, output voltage, output power, output circuit impedance and a wire feed speed are sampled during an additive manufacturing process when creating a current layer. A plurality of instantaneous contact tip-to-work distances (CTWD's) are determined based on at least one or both of the output current, output voltage, output power, output circuit impedance and the wire feed speed. An average CTWD is determined based on the plurality of instantaneous CTWD's. A correction factor is generated, based on at least the average CTWD, which is used to compensate for any error in height of the current layer.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: June 8, 2021
    Assignee: LINCOLN GLOBAL, INC.
    Inventors: Jason Kenneth Flamm, Steven R. Peters, William Thomas Matthews, Paul Edward Denney, Jonathan Paul, Levi Mitchell
  • Patent number: 10959862
    Abstract: A device includes a first member and a second member disposed in series along a longitudinal axis. The device also includes links coupling first joints of the first member to second joints of the second member. The first and second members and the links arranged to define a planar parallelogram linkage. The devices also include a resilient element disposed between the first member and the second member, the first member and the second member preloaded against the resilient element. The first member and the second member are preloaded to provide an arrangement of the first and the second joints in which a motion of the first joints with respect to the second joints is constrained to a direction substantially parallel to the longitudinal axis. The devices further include a sensor for generating a signal indicating a separation between the first member and the second member.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: March 30, 2021
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Jason Mitchell, Huseyin Atakan Varol, Brian Lawson, Don Truex
  • Patent number: 10932709
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: March 2, 2021
    Assignee: DEXCOM, INC.
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Patent number: 10827955
    Abstract: Sensor systems can be used to measure an analyte concentration. Sensor systems can include a base having a distal side configured to face towards a person's skin. An adhesive can couple the base to the skin. A transcutaneous analyte measurement sensor can be coupled to the base and can be located at least partially in the host. A transmitter can be coupled to the base and can transmit analyte measurement data to a remote device.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 10, 2020
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Minglian Shi, Sebastian Bohm, John Patrick Majewski, Maria Noel Brown Wells, Leah Morta Edra, Disha B. Sheth, John Michael Gray, Shanger Wang, Ted Tang Lee, Michael L. Moore, Jason Mitchell, Jennifer Blackwell, Neel Narayan Shah, Todd Andrew Newhouse, Jason Halac, Ryan Everett Schoonmaker, Paul V. Neale, Jiong Zou, Sean T. Saint
  • Publication number: 20200330006
    Abstract: Sensor devices including dissolvable tissue-piercing tips are provided. The sensor devices can be used in conjunction with dissolvable needles configured for inserting the sensor devices into a host. Hardening agents for strengthening membranes on sensor devices are also provided. Methods of using and fabricating sensor devices are also provided.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Inventors: Peter C. Simpson, Jennifer Blackwell, Sebastian Bohm, Michael J. Estes, Jeff Jackson, Jason Mitchell, Jack Pryor, Daiting Rong, Sean T. Saint, Disha B. Sheth, Shanger Wang
  • Patent number: 10788133
    Abstract: A directional-control valve is typically comprised of a valve spool that slides linearly within a valve body. The valve body typically includes five internal ports, which are covered or exposed as the spool slides within the body. The typical five-internal-port architecture precludes certain combinations of port connectivity when the spool is in the center position. For example, when the spool is in the center position, providing connectivity between the actuator ports, while simultaneously providing fluid isolation of the supply and exhaust ports, is not directly achievable with a standard five-port architecture. This application describes three embodiments that enable the aforementioned port connectivity when the spool is in the center position.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: September 29, 2020
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Michael Goldfarb, Jason Mitchell
  • Patent number: 10639169
    Abstract: A powered leg prosthesis including a powered knee joint with a knee joint and a knee motor unit for delivering power to the knee joint, a powered ankle joint coupled to the knee joint including an ankle joint and an ankle motor unit to deliver power to the ankle joint, a prosthetic foot coupled to the ankle joint, a plurality of sensors for measuring a real-time input, and controller for controlling movement of the prosthesis based on the real-time input. In the powered leg prosthesis, at least one of the knee motor unit or the ankle motor unit includes at least one drive stage, where the drive stage includes a rotary element for generating torque and at least one looped element affixed around the rotary element and configured for transmitting the torque to another rotary element coupled to a joint to be actuated.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: May 5, 2020
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Huseyin Atakan Varol, Frank Charles Sup, IV, Jason Mitchell, Thomas J. Withrow
  • Publication number: 20190339221
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20190339222
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20190339223
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20190339224
    Abstract: Systems and methods are provided that address the need to frequently calibrate analyte sensors, according to implementation. In more detail, systems and methods provide a preconnected analyte sensor system that physically combines an analyte sensor to measurement electronics during the manufacturing phase of the sensor and in some cases in subsequent life phases of the sensor, so as to allow an improved recognition of sensor environment over time to improve subsequent calibration of the sensor.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Inventors: Naresh C. Bhavaraju, Becky L. Clark, Vincent P. Crabtree, Chris W. Dring, Arturo Garcia, Jason Halac, Jonathan Hughes, Jeff Jackson, Lauren Hruby Jepson, David I-Chun Lee, Ted Tang Lee, Rui Ma, Zebediah L. McDaniel, Jason Mitchell, Andrew Attila Pal, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Stephen J. Vanslyke, Matthew D. Wightlin, Anna Leigh Davis, Hari Hampapuram, Aditya Sagar Mandapaka, Alexander Leroy Teeter, Liang Wang
  • Publication number: 20190307371
    Abstract: Described here are embodiments of processes and systems for the continuous manufacturing of implantable continuous analyte sensors. In some embodiments, a method is provided for sequentially advancing an elongated conductive body through a plurality of stations, each configured to treat the elongated conductive body. In some of these embodiments, one or more of the stations is configured to coat the elongated conductive body using a meniscus coating process, whereby a solution formed of a polymer and a solvent is prepared, the solution is continuously circulated to provide a meniscus on a top portion of a vessel holding the solution, and the elongated conductive body is advanced through the meniscus. The method may also comprise the step of removing excess coating material from the elongated conductive body by advancing the elongated conductive body through a die orifice.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Robert Boock, Jeff Jackson, Huashi Zhang, Jason Mitchell
  • Publication number: 20190167163
    Abstract: Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802?, 802? formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
    Type: Application
    Filed: January 17, 2019
    Publication date: June 6, 2019
    Inventors: Peter C. Simpson, Robert J. Boock, Paul V. Neale, Sebastian Böhm, Matthew Wightlin, Jack Pryor, Jason Mitchell, Jeff Jackson, Kaushik Patel, Antonio C. Llevares
  • Publication number: 20190117133
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart
  • Publication number: 20190120785
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart
  • Publication number: 20190117131
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart
  • Publication number: 20190120784
    Abstract: Pre-connected analyte sensors are provided. A pre-connected analyte sensor includes a sensor carrier attached to an analyte sensor. The sensor carrier includes a substrate configured for mechanical coupling of the sensor to testing, calibration, or wearable equipment. The sensor carrier also includes conductive contacts for electrically coupling sensor electrodes to the testing, calibration, or wearable equipment.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Jason Halac, John Charles Barry, Becky L. Clark, Chris W. Dring, John Michael Gray, Kris Elliot Higley, Jeff Jackson, David A. Keller, Ted Tang Lee, Jason Mitchell, Kenneth Pirondini, David Rego, Ryan Everett Schoonmaker, Peter C. Simpson, Craig Thomas Gadd, Kyle Thomas Stewart
  • Patent number: 10240695
    Abstract: Disclosed is an apparatus, a kit, and a method for repairing a sump wall pipe fitting. The apparatus may comprise first and second fitting halves for repairing a penetration fitting for a sump wall, the fitting halves having a semi-annular flange with a seal plate adapted to be sealed to the sump wall; at least one semi-cylindrical cuff that extends axially outward from surface of the semi-annular flange opposite the seal plate; and a semi-annular rib that extends radially inward from the semi-annular flange spaced at a distance between the seal plate and a rim of the at least one semi-cylindrical cuff. A dispensed bonder may also be included.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: March 26, 2019
    Assignee: Icon Containment Solutions, LLC
    Inventor: Jason Mitchell
  • Publication number: 20190060091
    Abstract: A device includes a first member and a second member disposed in series along a longitudinal axis. The device also includes links coupling first joints of the first member to second joints of the second member. The first and second members and the links arranged to define a planar parallelogram linkage. The devices also include a resilient element disposed between the first member and the second member, the first member and the second member preloaded against the resilient element. The first member and the second member are preloaded to provide an arrangement of the first and the second joints in which a motion of the first joints with respect to the second joints is constrained to a direction substantially parallel to the longitudinal axis. The devices further include a sensor for generating a signal indicating a separation between the first member and the second member.
    Type: Application
    Filed: October 29, 2018
    Publication date: February 28, 2019
    Inventors: Michael GOLDFARB, Jason MITCHELL, Huseyin Atakan VAROL, Brian LAWSON, Don TRUEX
  • Patent number: 10111762
    Abstract: A device includes a first member and a second member disposed in series along a longitudinal axis. The device also includes links coupling first joints of the first member to second joints of the second member. The first and second members and the links arranged to define a planar parallelogram linkage. The devices also include a resilient element disposed between the first member and the second member, the first member and the second member preloaded against the resilient element. The first member and the second member are preloaded to provide an arrangement of the first and the second joints in which a motion of the first joints with respect to the second joints is constrained to a direction substantially parallel to the longitudinal axis. The devices further include a sensor for generating a signal indicating a separation between the first member and the second member.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: October 30, 2018
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Michael Goldfarb, Jason Mitchell, Huseyin Atakan Varol, Brian Edward Lawson, Don Truex