Patents by Inventor Jason N. Gomez

Jason N. Gomez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957427
    Abstract: A manipulator for a surgical instrument may comprise an instrument holder coupled with the surgical instrument and rotatable in a plane that passes through a remote center. The manipulator may also comprise a linkage assembly coupled to the instrument holder to limit motion of the instrument holder to rotation about an axis that intersects the remote center. The linkage assembly may comprise a first linkage arm comprising first and second pulleys. Each pulley may comprise first and second drive tracks which are substantially co-planar. The first linkage arm may also comprise a first drive member section extending between the first drive tracks of the pulleys and a second drive member section extending between the second drive tracks of the pulleys. The first drive member section may be wound around the first pulley in a first direction and the second drive member section may be wound around the first pulley in an opposite direction.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: April 16, 2024
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Carolyn M. Fenech, Daniel H. Gomez, Jason N. Stamatelaky
  • Publication number: 20240086014
    Abstract: An electronic device may have a display with touch sensors. One or more shielding layers may be interposed between the display and the touch sensors. The shielding layers may include shielding structures such as a conductive mesh structure and/or a transparent conductive film. The shielding structures may be actively driven or passively biased. In the active driving scheme, one or more inverting circuits may receive a noise signal from a cathode layer in the display and/or from the shielding structures, invert the received noise signal, and drive the inverted noise signal back onto the shielding structures to prevent any noise from the display from negatively impacting the performance of the touch sensors. In the passive biasing scheme, the shielding structures may be biased to a power supply voltage.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Inventors: Rungrot Kitsomboonloha, Donggeon Han, Jason N Gomez, Kyung Wook Kim, Nikolaus Hammler, Pei-En Chang, Saman Saeedi, Shih Chang Chang, Shinya Ono, Suk Won Hong, Szu-Hsien Lee, Victor H Yin, Young-Jik Jo, Yu-Heng Cheng, Joyan G Sanctis, Hongwoo Lee
  • Publication number: 20240029625
    Abstract: Systems and methods for programming an electronic display in a double-row manner are provided. A system may include processing circuitry that generates image data and an electronic display that programs multiple rows of display pixels with different pixel data of the image data at the same time. This may allow double-row interlaced driving to reduce or eliminate image artifacts due to intra-frame pauses.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 25, 2024
    Inventors: Saman Saeedi, Hyunwoo Nho, Myungjoon Choi, Jie Won Ryu, Kyung Wook Kim, Vehbi Calayir, Kingsuk Brahma, Jason N Gomez, Kwang Soon Park
  • Publication number: 20240028162
    Abstract: An electronic display may include a touch sensing system configured to perform touch sensing in an active area of the electronic display and display driver circuitry configured to program display pixels of the active area to emit light. The electronic display may also include the active area. The active area may include a first portion and a second portion that are at least partially electrically separated. The display driver circuitry may program the display pixels in the first portion while the touch sensing circuitry may perform touch sensing in the second portion.
    Type: Application
    Filed: June 22, 2023
    Publication date: January 25, 2024
    Inventors: Jason N Gomez, Hyunwoo Nho, Jason C Hu, Kwang Soon Park, Kyung Wook Kim, James E Brown, Jie Won Ryu, Myungjoon Choi, Yao Shi, ByoungSuk Kim, Vehbi Calayir, Peng Li, Evan P Donoghue
  • Patent number: 11861110
    Abstract: An electronic device may have a display with touch sensors. One or more shielding layers may be interposed between the display and the touch sensors. The shielding layers may include shielding structures such as a conductive mesh structure and/or a transparent conductive film. The shielding structures may be actively driven or passively biased. In the active driving scheme, one or more inverting circuits may receive a noise signal from a cathode layer in the display and/or from the shielding structures, invert the received noise signal, and drive the inverted noise signal back onto the shielding structures to prevent any noise from the display from negatively impacting the performance of the touch sensors. In the passive biasing scheme, the shielding structures may be biased to a power supply voltage.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: January 2, 2024
    Assignee: Apple Inc.
    Inventors: Rungrot Kitsomboonloha, Donggeon Han, Jason N Gomez, Kyung Wook Kim, Nikolaus Hammler, Pei-En Chang, Saman Saeedi, Shih Chang Chang, Shinya Ono, Suk Won Hong, Szu-Hsien Lee, Victor H Yin, Young-Jik Jo, Yu-Heng Cheng, Joyan G Sanctis, Hongwoo Lee
  • Patent number: 11615727
    Abstract: In an embodiment, an electronic device includes an electronic display. The electronic display provides a programmable latency period in response to receiving a first image frame corresponding to first image frame data. The electronic display also displays the first image frame after the programmable latency period and during display of the first image frame, receives a second image frame corresponding to second image frame data. The electronic display also repeats display of the first image frame in response to receiving the second image frame.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: March 28, 2023
    Assignee: Apple Inc.
    Inventors: Kevin W. Sliech, Jason N. Gomez, David A. Hartley, Chengrui Le, Paolo Sacchetto, Arthur L. Spence
  • Publication number: 20220327977
    Abstract: In an embodiment, an electronic device includes an electronic display. The electronic display provides a programmable latency period in response to receiving a first image frame corresponding to first image frame data. The electronic display also displays the first image frame after the programmable latency period and during display of the first image frame, receives a second image frame corresponding to second image frame data. The electronic display also repeats display of the first image frame in response to receiving the second image frame.
    Type: Application
    Filed: February 24, 2022
    Publication date: October 13, 2022
    Inventors: Kevin W. Sliech, Jason N. Gomez, David A. Hartley, Chengrui Le, Paolo Sacchetto, Arthur L. Spence
  • Patent number: 10600379
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: March 24, 2020
    Assignee: Apple Inc.
    Inventors: Prasanna Nambi, Jason N. Gomez, Fenghua Zheng, Paolo Sacchetto, Sandro H. Pintz, Taesung Kim, Christopher P. Tann, Marc Albrecht, David W. Lum
  • Publication number: 20180350313
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Application
    Filed: August 14, 2018
    Publication date: December 6, 2018
    Inventors: Prasanna NAMBI, Jason N. GOMEZ, Fenghua ZHENG, Paolo SACCHETTO, Sandro H. PINTZ, Taesung KIM, Christopher P. TANN, Marc ALBRECHT, David W. LUM
  • Patent number: 10056050
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: August 21, 2018
    Assignee: Apple Inc.
    Inventors: Prasanna Nambi, Jason N. Gomez, Fenghua Zheng, Paolo Sacchetto, Sandro H. Pintz, Taesung Kim, Christopher P. Tann, Marc Albrecht, David W. Lum
  • Patent number: 9804639
    Abstract: An electronic device may have a housing with a lid that rotates relative to a base. A display in the lid may have a thin-film transistor layer. Display driver circuitry may be mounted to the thin-film transistor layer. A display timing controller integrated circuit may be mounted in the base. A rigid flex printed circuit may have a rigid portion in the base to which the display timing controller integrated circuit is mounted and may have a rigid portion in the lid. A flexible printed circuit portion of the rigid flex printed circuit may be used to couple the rigid printed circuit portion in the lid to the thin-film transistor layer. A flexible printed circuit portion of the rigid flex printed circuit that extends between the lid and the base may be formed from a double-shield-layer single-signal-line-layer flexible printed circuit.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: October 31, 2017
    Assignee: Apple Inc.
    Inventors: Bryan W. Posner, Dinesh C. Mathew, Eric L. Benson, Jason N. Gomez, Jun Qi, Robert Y. Cao, Victor H. Yin, Christiaan A. Ligtenberg, Wey-Jiun Lin
  • Publication number: 20170047027
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Application
    Filed: October 28, 2016
    Publication date: February 16, 2017
    Inventors: Prasanna NAMBI, Jason N. GOMEZ, Fenghua ZHENG, Paolo SACCHETTO, Sandro H. PINTZ, Taesung KIM, Christopher P. TANN, Marc ALBRECHT, David W. LUM
  • Patent number: 9501993
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: November 22, 2016
    Assignee: Apple Inc.
    Inventors: Prasanna Nambi, Jason N. Gomez, Fenghua Zheng, Paolo Sacchetto, Sandro H. Pintz, Taesung Kim, Christopher P. Tann, Marc Albrecht, David W. Lum
  • Patent number: 9406282
    Abstract: A device includes a timing test circuit. The timing test circuit receives a timing signal related to the display of an image on a display. The timing test circuit also determines if the timing signals are invalid. Moreover, the timing test circuit transmits a fault indication when the timing signals are determined to be invalid.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: August 2, 2016
    Assignee: APPLE INC.
    Inventors: Jason N. Gomez, James C. Aamold, Sandro H. Pintz, Paolo Sacchetto
  • Patent number: 9318069
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: April 19, 2016
    Assignee: Apple Inc.
    Inventors: Prasanna Nambi, Jason N. Gomez, Fenghua Zheng, Paolo Sacchetto, Sandro H. Pintz, Taesung Kim, Christopher P. Tann, Marc Albrecht, David W. Lum
  • Publication number: 20150325212
    Abstract: A device includes a timing test circuit. The timing test circuit receives a timing signal related to the display of an image on a display. The timing test circuit also determines if the timing signals are invalid. Moreover, the timing test circuit transmits a fault indication when the timing signals are determined to be invalid.
    Type: Application
    Filed: September 30, 2014
    Publication date: November 12, 2015
    Inventors: Jason N. Gomez, James C. Aamold, Sandro H. Pintz, Paolo Sacchetto
  • Publication number: 20150049275
    Abstract: An electronic device may have a housing with a lid that rotates relative to a base. A display in the lid may have a thin-film transistor layer. Display driver circuitry may be mounted to the thin-film transistor layer. A display timing controller integrated circuit may be mounted in the base. A rigid flex printed circuit may have a rigid portion in the base to which the display timing controller integrated circuit is mounted and may have a rigid portion in the lid. A flexible printed circuit portion of the rigid flex printed circuit may be used to couple the rigid printed circuit portion in the lid to the thin-film transistor layer. A flexible printed circuit portion of the rigid flex printed circuit that extends between the lid and the base may be formed from a double-shield-layer single-signal-line-layer flexible printed circuit.
    Type: Application
    Filed: August 15, 2013
    Publication date: February 19, 2015
    Applicant: Apple Inc.
    Inventors: Bryan W. Posner, Dinesh C. Mathew, Eric L. Benson, Jason N. Gomez, Jun Qi, Robert Y. Cao, Victor H. Yin, Christiaan A. Ligtenberg, Wey-Jiun Lin
  • Publication number: 20140198093
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: Apple Inc.
    Inventors: Prasanna Nambi, Jason N. Gomez, Fenghua Zheng, Paolo Sacchetto, Sandro H. Pintz, Taesung Kim, Christopher P. Tann, Marc Albrecht, David W. Lum
  • Publication number: 20140198114
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: Apple Inc.
    Inventors: Prasanna Nambi, Jason N. Gomez, Fenghua Zheng, Paolo Sacchetto, Sandro H. Pintz, Taesung Kim, Christopher P. Tann, Marc Albrecht, David W. Lum
  • Publication number: 20140198138
    Abstract: The disclosure describes procedures for dynamically employing a variable refresh rate at an LCD display of a consumer electronic device, such as a laptop computer, a tablet computer, a mobile phone, or a music player device. In some configurations, the consumer electronic device can include a host system portion, having one or more processors and a display system portion, having a timing controller, a buffer circuit, a display driver, and a display panel. The display system can receive image data and image control data from a GPU of the host system, evaluate the received image control data to determine a reduced refresh rate (RRR) for employing at the display panel, and then transition to the RRR, whenever practicable, to conserve power. In some scenarios, the transition to the RRR can be a transition from a LRR of 50 hertz or above to a RRR of 40 hertz or below.
    Type: Application
    Filed: January 14, 2014
    Publication date: July 17, 2014
    Applicant: Apple Inc.
    Inventors: Prasanna Nambi, Jason N. Gomez, Fenghua Zheng, Paolo Sacchetto, Sandro H. Pintz, Taesung Kim, Christopher P. Tann, Marc Albrecht, David W. Lum