Patents by Inventor Jason P. Floder

Jason P. Floder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10337093
    Abstract: A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: July 2, 2019
    Assignee: ATI PROPERTIES LLC
    Inventors: Robin M. Forbes Jones, George J. Smith, Jr., Jason P. Floder, Jean-Philippe A. Thomas, Ramesh S. Minisandram
  • Publication number: 20160122851
    Abstract: A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
    Type: Application
    Filed: October 13, 2015
    Publication date: May 5, 2016
    Inventors: Robin M. Forbes Jones, George J. Smith, JR., Jason P. Floder, Jean-Philippe A. Thomas, Ramesh S. Minisandram
  • Patent number: 9192981
    Abstract: A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: November 24, 2015
    Assignee: ATI Properties, Inc.
    Inventors: Robin M. Forbes Jones, George J. Smith, Jr., Jason P. Floder, Jean-Philippe A. Thomas, Ramesh S. Minisandram
  • Patent number: 9050647
    Abstract: Split pass forging a workpiece to initiate microstructure refinement comprises press forging a metallic material workpiece in a first forging direction one or more times up to a reduction ductility limit of the metallic material to impart a total strain in the first forging direction sufficient to initiate microstructure refinement; rotating the workpiece; open die press forging the workpiece in a second forging direction one or more times up to the reduction ductility limit to impart a total strain in the second forging direction to initiate microstructure refinement; and repeating rotating and open die press forging in a third and, optionally, one or more additional directions until a total amount of strain to initiate microstructure refinement is imparted in an entire volume of the workpiece.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 9, 2015
    Assignee: ATI Properties, Inc.
    Inventors: Jean-Phillipe A. Thomas, Ramesh S. Minisandram, Jason P. Floder, George J. Smith, Jr.
  • Publication number: 20140260492
    Abstract: Split pass forging a workpiece to initiate microstructure refinement comprises press forging a metallic material workpiece in a first forging direction one or more times up to a reduction ductility limit of the metallic material to impart a total strain in the first forging direction sufficient to initiate microstructure refinement; rotating the workpiece; open die press forging the workpiece in a second forging direction one or more times up to the reduction ductility limit to impart a total strain in the second forging direction to initiate microstructure refinement; and repeating rotating and open die press forging in a third and, optionally, one or more additional directions until a total amount of strain to initiate microstructure refinement is imparted in an entire volume of the workpiece.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: ATI PROPERTIES, INC.
    Inventors: Jean-Phillippe A. Thomas, Ramesh S. Minisandram, Jason P. Floder, George J. Smith, JR.
  • Publication number: 20140255719
    Abstract: A method of processing a non-magnetic alloy workpiece comprises heating the workpiece to a warm working temperature, open die press forging the workpiece to impart a desired strain in a central region of the workpiece, and radial forging the workpiece to impart a desired strain in a surface region of the workpiece. In a non-limiting embodiment, after the steps of open die press forging and radial forging, the strain imparted in the surface region is substantially equivalent to the strain imparted in the central region. In another non-limiting embodiment, the strain imparted in the central and surface regions are in a range from 0.3 inch/inch to 1 inch/inch, and there exists no more than a 0.5 inch/inch difference in strain of the central region compared with the strain of the surface region of the workpiece. An alloy forging processed according to methods described herein also is disclosed.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: ATI PROPERTIES, INC.
    Inventors: Robin M. Forbes Jones, George J. Smith, JR., Jason P. Floder, Jean-Philippe A. Thomas, Ramesh S. Minisandram
  • Patent number: 6360520
    Abstract: The invention provides spinning rings for textile spinning processes having an improved bearing surface formed of a coating of amorphous chromium that is typically applied by an electrodeposition process. The amorphous chromium coated spinning rings of the present invention impart a durable spinning ring that can be used in fine yarn, high speed spinning operations without the need to provide for a conventional break-in period.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: March 26, 2002
    Assignee: AB Carter, Inc.
    Inventors: Gereon E. Poquette, Jason P. Floder, Joe D. Faris
  • Publication number: 20010047645
    Abstract: The invention provides spinning rings for textile spinning processes having an improved bearing surface formed of a coating of amorphous chromium that is typically applied by an electrodeposition process. The amorphous chromium coated spinning rings of the present invention impart a durable spinning ring that can be used in fine yarn, high speed spinning operations without the need to provide for a conventional break-in period.
    Type: Application
    Filed: January 5, 2001
    Publication date: December 6, 2001
    Applicant: AB Carter, Inc
    Inventors: Gereon E. Poquette, Jason P. Floder, Joe D. Faris