Patents by Inventor Jason Quill

Jason Quill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10321992
    Abstract: Prosthetic heart valve devices and associated methods for percutaneous or transcatheter heart valve replacement are disclosed herein. A heart valve prosthesis configured in accordance herewith includes a frame having a valve support and a plurality of support arms extending therefrom. The plurality of support arms may include a main support arm configured to extend from the valve support for capturing at least a portion of a valve leaflet of a native heart valve therebetween when the valve prosthesis is in an expanded configuration and deployed within the native heart valve. In addition, the plurality of support arms may include multiple supplemental support arms disposed about the circumference of the valve support that when deployed in the expanded configuration are configured to at least partially engage subannular tissue at the native heart valve.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: June 18, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Jason Quill, Padraig Savage, Joshua Dwork, Kshitija Garde, Sarah Ahlberg, Igor Kovalsky
  • Publication number: 20190151086
    Abstract: A delivery system for percutaneously delivering a heart valve prosthesis to a site of a native heart valve includes a delivery catheter and a heart valve prosthesis. The delivery catheter includes an outer sheath, an inner shaft, and an orifice restriction mechanism. The heart valve prosthesis has a valve member and a docking member. When the orifice restriction mechanism is positioned within the docking member within an annulus of the native heart valve, the orifice restriction mechanism temporarily replicates the operation of the native heart valve until the valve member is positioned within the docking member.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Inventors: Marian Lally, James R. Keogh, Jason Quill
  • Publication number: 20190133758
    Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.
    Type: Application
    Filed: January 8, 2019
    Publication date: May 9, 2019
    Inventors: Niall DUFFY, Marian LALLY, Philip HAARSTAD, Frank HAREWOOD, Igor KOVALSKY, Jason QUILL, Daniel GELFMAN, Ana MENK, Darren JANZIG, Shyam GOKALDAS, Kenneth WARNOCK
  • Patent number: 10206775
    Abstract: Heart valve prosthesis are disclosed that include a frame or support structure having an inflow portion, a valve-retaining tubular or central portion and a pair of support arms. The inflow portion radially extends from a first end of the valve-retaining tubular portion and the pair of support arms are circumferentially spaced apart and radially extend from an opposing second end of the valve-retaining tubular portion.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: February 19, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Igor Kovalsky, Kshitija Garde, Pham Lo, Jason Quill, Padraig Savage
  • Patent number: 10188515
    Abstract: Devices, systems, and methods for crimping a medical device are disclosed. More specifically, the present disclosure relates to devices, systems, and methods for reducing the diameter of a collapsible heart valve prosthesis to be loaded onto a delivery device. The devices, systems, and methods using at least one funnel to crimp the heart valve prosthesis and load it onto the delivery system.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: January 29, 2019
    Assignee: MEDTRONIC VASCULAR INC.
    Inventors: Niall Duffy, Marian Creaven, Philip Haarstad, Frank Harewood, Igor Kovalsky, Jason Quill, Daniel Gelfman, Ana Menk, Darren Janzig, Shyam Gokaldas, Kenneth Warnock
  • Publication number: 20180318080
    Abstract: Systems and methods for modifying a heart valve annulus in a minimally invasive surgical procedure. A helical anchor is provided, having a memory set to a coiled shape or state. The helical anchor is further configured to self-revert from a substantially straight state to the coiled state. The helical anchor is loaded within a needle that constrains the helical anchor to the substantially straight state. The needle is delivered to the valve annulus and inserted into tissue of the annulus. The helical anchor is then deployed from the needle (e.g., the needle is retracted from over the helical anchor). Once deployed, the helical anchor self-transitions toward the coiled shape, cinching engaged tissue of the valve annulus.
    Type: Application
    Filed: July 12, 2018
    Publication date: November 8, 2018
    Inventors: Jason Quill, Cynthia Clague, Michael Green, Alexander J. Hill, Ana Menk, Paul Rothstein, Georg Bortlein
  • Publication number: 20180289478
    Abstract: A delivery device includes an inner shaft, an outer sheath, a nosecone, and a tether component. The outer sheath is slidably disposed over the inner shaft. The nosecone is removably coupled to the inner shaft. The nosecone includes a delivery configuration for delivery to a treatment site, a radially compressed configuration in which a portion of the nosecone is configured to traverse through a heart wall, and a radially expanded configuration in which an outer surface of the nosecone contacts an outer surface of the heart wall. The tether component includes a first end coupled to the nosecone. The nosecone is configured to plug a piercing in the heart wall when in the radially expanded configuration.
    Type: Application
    Filed: April 5, 2017
    Publication date: October 11, 2018
    Inventor: Jason Quill
  • Patent number: 10028832
    Abstract: Systems and methods for modifying a heart valve annulus in a minimally invasive surgical procedure. A helical anchor is provided, having a memory set to a coiled shape or state. The helical anchor is further configured to self-revert from a substantially straight state to the coiled state. The helical anchor is loaded within a needle that constrains the helical anchor to the substantially straight state. The needle is delivered to the valve annulus and inserted into tissue of the annulus. The helical anchor is then deployed from the needle (e.g., the needle is retracted from over the helical anchor). Once deployed, the helical anchor self-transitions toward the coiled shape, cinching engaged tissue of the valve annulus.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: July 24, 2018
    Assignee: MEDTRONIC, INC.
    Inventors: Jason Quill, Cynthia Clague, Michael Green, Alexander J. Hill, Ana Menk, Paul Rothstein, Georg Bortlein
  • Publication number: 20180200058
    Abstract: A heart valve therapy system including a delivery device and a stented valve. The delivery device includes an outer sheath, an inner shaft, an optional hub assembly, and a plurality of tethers. In a delivery state, a stent frame of the prosthesis is crimped over the inner shaft and maintained in a compressed condition by the outer sheath. The tethers are connected to the stent frame. In a partial deployment state, the outer sheath is at least partially withdrawn, allowing the stent frame to self-expand. Tension in the tethers prevents the stent frame from rapidly expanding and optionally allowing recapture. Upon completion of the stent frame expansion, the tethers are withdrawn.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 19, 2018
    Inventors: Marian Creaven, Marc Anderson, Kate Corish, Declan Costello, Niall Duffy, Joshua Dwork, John Gallagher, Patrick Griffin, Gavin Kenny, Deirdre McGowan Smyth, John Milroy, Jason Quill, Herinaina Rabarimanantsoa Jamous, Paul Rothstein, Jeffrey Sandstrom, Edmond Sheahan, Frank White
  • Publication number: 20180185142
    Abstract: Described is a prosthetic valve, comprising: an expandable stent including an inner lumen and having a first and a second end; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration in order to anchor the prosthetic valve at an implantation position in a body lumen. Related systems and methods.
    Type: Application
    Filed: February 23, 2018
    Publication date: July 5, 2018
    Inventors: Jason Quill, Cynthia T. Clague, Paul T. Rothstein
  • Publication number: 20180110620
    Abstract: In some embodiments, a valve prosthesis includes an inlet portion that is substantially s-shaped and configured to engage the floor of the outflow tract of the native heart atrium. In some embodiments, a valve prosthesis includes a chordae guiding element configured to reduce bending of the chordae to reduce stress on the chordae during the cardiac cycle. In some embodiments, a valve prosthesis includes a central portion having an hourglass shape configured to pinch a native annulus in order to provide axial fixation of the valve prosthesis within a valve site. In some embodiments, a valve prosthesis includes a frame having an outflow end that is flared to provide a gap between an outflow end of the frame and an outflow end of prosthetic leaflets when the prosthetic leaflets are fully opened.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 26, 2018
    Inventors: Igor Kovalsky, Jason Quill, Daniel Glozman, Ilia Hariton, Yossi Tuval, Nadav Yellin
  • Patent number: 9925045
    Abstract: A heart valve therapy system including a delivery device and a stented valve. The delivery device includes an outer sheath, an inner shaft, an optional hub assembly, and a plurality of tethers. In a delivery state, a stent frame of the prosthesis is crimped over the inner shaft and maintained in a compressed condition by the outer sheath. The tethers are connected to the stent frame. In a partial deployment state, the outer sheath is at least partially withdrawn, allowing the stent frame to self-expand. Tension in the tethers prevents the stent frame from rapidly expanding and optionally allowing recapture. Upon completion of the stent frame expansion, the tethers are withdrawn.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: March 27, 2018
    Assignee: Medtronic Vascular Galway
    Inventors: Marian Creaven, Marc Anderson, Kate Corish, Declan Costello, Niall Duffy, Joshua Dwork, John Gallagher, Patrick Griffin, Gavin Kenny, Deirdre McGowan Smyth, John Milroy, Jason Quill, Herinaina Rabarimanantsoa Jamous, Paul Rothstein, Jeffrey Sandstrom, Edmond Sheahan, Frank White
  • Patent number: 9925044
    Abstract: Described is a prosthetic valve, comprising: an expandable stent including an inner lumen and having a first and a second end; and a spring attached to the first end of the expandable stent; wherein the expandable stent and the spring can expand radially to a desired diametric configuration in order to anchor the prosthetic valve at an implantation position in a body lumen. Related systems and methods.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 27, 2018
    Assignee: Medtronic, Inc.
    Inventors: Jason Quill, Cynthia T. Clague, Paul T. Rothstein
  • Patent number: 9867698
    Abstract: In some embodiments, a valve prosthesis includes an inlet portion that is substantially s-shaped and configured to engage the floor of the outflow tract of the native heart atrium. In some embodiments, a valve prosthesis includes a chordae guiding element configured to reduce bending of the chordae to reduce stress on the chordae during the cardiac cycle. In some embodiments, a valve prosthesis includes a central portion having an hourglass shape configured to pinch a native annulus in order to provide axial fixation of the valve prosthesis within a valve site. In some embodiments, a valve prosthesis includes a frame having an outflow end that is flared to provide a gap between an outflow end of the frame and an outflow end of prosthetic leaflets when the prosthetic leaflets are fully opened.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: January 16, 2018
    Assignee: Medtronic, Inc.
    Inventors: Igor Kovalsky, Jason Quill, Daniel Glozman, Illia Hariton, Yossi Tuval, Nadav Yellin
  • Publication number: 20170281338
    Abstract: Mitral valve prosthesis are disclosed that include a frame or support structure having an inflow portion, a valve-retaining tubular portion and a pair of support arms. The inflow portion radially extends from a first end of the valve-retaining tubular portion and the pair of support arms are circumferentially spaced apart and radially extend from an opposing second end of the valve-retaining tubular portion. The inflow portion is formed from a plurality of struts that outwardly extend from the first end of the valve-retaining tubular portion with adjacent struts of the plurality of struts being joined, wherein each strut of the plurality of struts has a substantially s-shaped profile and at least one twisted area.
    Type: Application
    Filed: April 26, 2017
    Publication date: October 5, 2017
    Inventors: Jason Quill, Igor Kovalsky
  • Publication number: 20170239047
    Abstract: A delivery system for percutaneously deploying a valve prosthesis. The system includes a catheter assembly including a delivery sheath capsule and a handle having an oscillating device. The capsule is configured to compressively retain the valve prosthesis during implantation. After the valve prosthesis is partially exposed during implantation, the oscillating device can create a vibratory motion to reduce the friction between the valve prosthesis and the delivery sheath capsule in order to recapture the valve prosthesis.
    Type: Application
    Filed: May 10, 2017
    Publication date: August 24, 2017
    Inventors: Jason Quill, Paul Rothstein, Thomas Secord, Byron Johnson
  • Publication number: 20170216026
    Abstract: Prosthetic heart valve devices and associated methods for percutaneous or transcatheter heart valve replacement are disclosed herein. A heart valve prosthesis configured in accordance herewith includes a frame having a valve support and a plurality of support arms extending therefrom. The plurality of support arms may include a main support arm configured to extend from the valve support for capturing at least a portion of a valve leaflet of a native heart valve therebetween when the valve prosthesis is in an expanded configuration and deployed within the native heart valve. In addition, the plurality of support arms may include multiple supplemental support arms disposed about the circumference of the valve support that when deployed in the expanded configuration are configured to at least partially engage subannular tissue at the native heart valve.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 3, 2017
    Inventors: Jason Quill, Padraig Savage, Joshua Dwork, Kshitija Garde, Sarah Ahlberg, Igor Kovalsky
  • Patent number: 9675456
    Abstract: A delivery system for percutaneously deploying a valve prosthesis. The system includes a catheter assembly including a delivery sheath capsule and a handle having an oscillating device. The capsule is configured to compressively retain the valve prosthesis during implantation. After the valve prosthesis is partially exposed during implantation, the oscillating device can create a vibratory motion to reduce the friction between the valve prosthesis and the delivery sheath capsule in order to recapture the valve prosthesis.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: June 13, 2017
    Assignee: Medtronic, Inc.
    Inventors: Jason Quill, Paul Rothstein, Thomas Secord, Byron Johnson
  • Patent number: 9662202
    Abstract: Mitral valve prosthesis are disclosed that include a frame or support structure having an inflow portion, a valve-retaining tubular portion and a pair of support arms. The inflow portion radially extends from a first end of the valve-retaining tubular portion and the pair of support arms are circumferentially spaced apart and radially extend from an opposing second end of the valve-retaining tubular portion. The inflow portion is formed from a plurality of struts that outwardly extend from the first end of the valve-retaining tubular portion with adjacent struts of the plurality of struts being joined, wherein each strut of the plurality of struts has a substantially s-shaped profile and at least one twisted area.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: May 30, 2017
    Assignee: Medtronic, Inc.
    Inventors: Jason Quill, Igor Kovalsky
  • Publication number: 20170128211
    Abstract: A delivery system for delivery of a radially expandable device to an implantation site in a patient, the delivery system including an elongated tubular member comprising a distal tip and an outer surface, first and second balloon portions spaced proximally from each other and the distal tip along a length of the tubular member, an annular space between the first and second balloon portions, a plurality of clip deployment tubes extendably moveable relative to the outer surface of the tubular member, and a plurality of clips, wherein each clip is moveable within a length of one of the clip deployment tubes between a retracted position and a deployed position.
    Type: Application
    Filed: November 17, 2016
    Publication date: May 11, 2017
    Inventors: Damian Jelich, Ana Menk, Jason Quill, Gilbert Tang