Patents by Inventor Jason R. CROY

Jason R. CROY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11862783
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: January 2, 2024
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy
  • Publication number: 20230373812
    Abstract: Substantially defect-free layered lithium nickel oxide materials of Formula (I): Li(1?x)(Ni(1?y)My)(1+x)O2 and Formula (II): LiaNibMc O2 are provided herein, wherein M is one or more metal selected from the group consisting of Co, Mn, Al, Mg, Ti, B, Zr, Nb, and Mo; 0?x?0.05; and 0?y?0.1, 0.97?a?1.03; 0.9?b?1; 0?c?0.1; and 0.97?(b+c)?1.03; and the material has a layered structure with no more than about 1.2 percent disorder between lithium and transition metal (TM) layers, as determined by structural refinement calculations on x-ray diffraction (XRD) data, compared to an ideal layered LiNiO2 structure. The materials can be formed by heating Ni(OH)2 or NiO with lithium hydroxide at a temperature in the range of about 650 to 680° C.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 23, 2023
    Inventors: Jihyeon GIM, Eungje LEE, Jinhyup HAN, Jason R. CROY
  • Patent number: 11804588
    Abstract: Stabilized layered lithium metal oxide cathode materials are described which include excess lithium, Ni, Mn, and at least one other metal ion. The materials comprise a layered LiMO2-type material in which M comprises a combination of Ni, Mn, and at least one other metal ion that includes less than about 6 mol % Co; and which has about 1 to 6 percent excess lithium. In one embodiment, the stabilized lithium metal oxide cathode material comprises a composition having the empirical formula xLi2MnO3·(1?x)LiNi0.5+?/2Mn0.5??Co?/2O2, wherein 0<x?0.1; and 0???0.2. In another embodiment, the stabilized lithium metal oxide cathode material comprises a composition having the empirical formula Li1+3y[NiaMnbM?c]1?yO2, wherein M? is one of more metal selected from the group consisting of Co, Al, Fe, Mg, and Ti; 0<y?0.02; 0.85?a?0.96; 0.03?b?0.1; and 0.01?c?0.1.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: October 31, 2023
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Jason R. Croy, Mahalingam Balasubramanian
  • Publication number: 20230282820
    Abstract: Stabilized lithium- and manganese rich manganese-nickel-oxide electrode materials for Li-ion batteries with structurally-integrated layered, lithiated spinel- and rock salt components are described, as are methods to synthesize them. In these methods, selected annealing temperatures and times are used to control the amount of a stabilizing lithiated spinel component, as well as the extent of disorder in the composite electrode structure to optimize electrochemical performance. The stabilized lithium- and manganese rich manganese-nickel-oxide electrode materials can be structurally-integrated with other lithium-metal-oxide or lithium-metal-polyanionic components, as well.
    Type: Application
    Filed: March 15, 2023
    Publication date: September 7, 2023
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Eungje LEE, Jason R, CROY, Boyu SHI
  • Publication number: 20230108813
    Abstract: A composite electrode active material is described herein, which comprises two or more electrode active materials blended or structurally-integrated together, in one of the materials is a lithiated spinel selected from the group consisting of (a) a lithiated spinel of formula LiMnxNiyMzO2; wherein M comprises at least one metal cation other than manganese and nickel cations; x+y+z=1; 0<x<1.0; 0<y<1.0; 0?z?0.5; and the ratio of x:y is in the range of about 1:2 to about 2:1; and (b) a lithiated spinel of formula LiM1O2, wherein M1 comprises a combination of Mn and Ni transition metal ions in a ratio of Mn to Ni ions of about 2:1 to about 1:1.
    Type: Application
    Filed: December 5, 2022
    Publication date: April 6, 2023
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Eungje LEE, Jason R. CROY, Boyu SHI
  • Publication number: 20220085348
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Application
    Filed: August 17, 2021
    Publication date: March 17, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy
  • Publication number: 20220029149
    Abstract: Stabilized layered lithium metal oxide cathode materials are described which include excess lithium, Ni, Mn, and at least one other metal ion. The materials comprise a layered LiMO2-type material in which M comprises a combination of Ni, Mn, and at least one other metal ion that includes less than about 6 mol % Co; and which has about 1 to 6 percent excess lithium. In one embodiment, the stabilized lithium metal oxide cathode material comprises a composition having the empirical formula xLi2MnO3.(1?x)LiNi0.5+?/2Mn0.5??Co?/2O2, wherein 0<x?0.1; and 0???0.2. In another embodiment, the stabilized lithium metal oxide cathode material comprises a composition having the empirical formula Li1+3y[NiaMnbM?c]1?yO2, wherein M? is one of more metal selected from the group consisting of Co, Al, Fe, Mg, and Ti; 0<y?0.02; 0.85?a?0.96; 0.03?b?0.1; and 0.01?c?0.1.
    Type: Application
    Filed: July 24, 2020
    Publication date: January 27, 2022
    Inventors: Jason R. CROY, Mahalingam BALASUBRAMANIAN
  • Publication number: 20220029161
    Abstract: Lithium-manganese-nickel-oxide electrode materials are described herein, which are crystalline, structurally-integrated, lithium-metal-oxides of empirical formula LiM1O2 wherein M1 comprises a combination of Mn and Ni transition metal ions; the crystal structure of the materials comprises domains of a disordered lithiated-spinel component, a disordered layered component, and optionally a disordered rock salt component, in which the oxygen lattice of the components is cubic-close packed. In general, the Mn:Ni ratio in the lithiated-spinel structures described herein is less than 2:1 and preferably close to 1:1. Preferably, M1 is M2(1-w)M3w, wherein M2 is a combination of Mn and Ni transition metal ions in a ratio of Mn to Ni ions of about 2:1 to about 1:1; M3 is one or more metal cations selected from the group consisting of an Al cation, a Ga cation, a Mg cation, a Ti cation; and a Co cation; and 0<w?0.5.
    Type: Application
    Filed: June 18, 2021
    Publication date: January 27, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Eungje LEE, Jason R, CROY, Joseph A. LIBERA, Kyojin KU
  • Publication number: 20220029160
    Abstract: Lithium-manganese-nickel-oxide electrode materials for lithium cells and batteries, notably rechargeable Li-ion batteries, are described herein. These electrode materials are comprised of crystalline, structurally-integrated, lithium-metal-oxides of empirical formula LiM1O2 wherein M1 comprises a combination of Mn and Ni transition metal ions; the crystal structure of the materials comprises domains of a disordered lithiated-spinel component, a disordered layered component, and a disordered rock salt component, in which the oxygen lattice of the components is cubic-close packed. In general, the Mn:Ni ratio in the lithiated-spinel structures described herein is less than 2:1 and preferably close to 1:1, and more preferably 1:1. Optionally, the lithium-manganese-nickel-oxide electrode materials can be blended or structurally-integrated with other cathode materials and structures.
    Type: Application
    Filed: May 6, 2021
    Publication date: January 27, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Eungje LEE, Jason R, CROY, Boyu SHI, Jihyeon GIM
  • Publication number: 20220029156
    Abstract: Cobalt-free lithium-manganese-nickel-oxide electrode materials for lithium cells and batteries, notably rechargeable Li-ion batteries, are described herein. These electrode materials have a lithiated-spinel structure with the general formula LiMnxNiyMzO2, or alternatively in lithiated-spinel notation, Li2Mn2xNi2yM2zO4, in which x+y+z=1, 0<x<1.0, 0<y<1.0, 0?z?0.5, and in which M is selected from one or more metal cations other than Mn, Ni and Co. In general, the Mn:Ni ratio in the lithiated-spinel structures described herein is less than 2:1 and greater than 1:2, preferably close to 1:1, and more preferably 1:1. Optionally, the cobalt-free lithiated spinel materials can be blended or structurally-integrated with other cathode materials that may include cobalt.
    Type: Application
    Filed: December 29, 2020
    Publication date: January 27, 2022
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Eungje LEE, Jason R, CROY, Boyu SHI, Jihyeon GIM
  • Publication number: 20210336240
    Abstract: A method for coating of lithium ion electrode materials via atomic layer deposition. The coated materials may be integrated in part as a dopant in the electrode itself via heat treatment forming a doped lithium electrode.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 28, 2021
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jason R. Croy, Jeffrey W. Elam, Arturo Gutierrez, Jihyeon Gim, Devika Choudhury, Eungje Lee, Hakim Iddir
  • Patent number: 11158856
    Abstract: An electrode comprises an electrode core. A composite bilayer coating is conformally disposed on the electrode core. The composite bilayer coating comprises a first layer disposed on at least a portion of the electrode core. The first layer comprises a metal fluoride, a metal oxide or a metal sulfide. A second layer is disposed on the first layer and comprises a metal fluoride, a metal oxide or a metal sulfide.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: October 26, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jason R. Croy, Jeffrey W. Elam, Mahalingam Balasubramanian
  • Patent number: 11121355
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 14, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy
  • Publication number: 20210210755
    Abstract: Cation-stabilized materials and compositions are described herein, which suppress the structural and electrochemical instability of lithium-metal-oxide spinel and lithiated lithium-metal-oxide spinel electrodes for lithium batteries, notably lithium-ion batteries. The lithium metal oxide electrode material comprises a disordered rock salt structure with partial lithiated-spinel character, wherein, for example, the disordered rock salt structure comprises a formula Li2(M?2?am??a)O4, which has the crystallographic formula: [Li2?bM??b]16c [M?2?aM??1-bLib]16dO4 wherein 16c and 16d refer to the octahedral sites of the prototypic space group symmetry Fd3m; M? and M?? are metal ions; 0<a?0.5; and 0<b<0.5. These stabilized materials are useful as positive electrodes for lithium batteries in their own right or when used as a structural component to stabilize layered metal oxide electrode systems, such as a two-component layered-layered system or a multi-component layered-layered-spinel system.
    Type: Application
    Filed: March 17, 2021
    Publication date: July 8, 2021
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Eungje LEE, Jason R. CROY
  • Patent number: 10790508
    Abstract: An electrode material comprising a composite lithium metal oxide, which in an initial state has the formula: y[xLi2MO3.(1?x)LiM?O2].(1?y)Li1+dMn2?z?dM?zO4; wherein 0?x?1; 0.75?y<1; 0<z?2; 0?d?0.2; and z?d?2. M comprises one or more metal ions that together have an average oxidation state of +4; M? comprises one or more metal ions that together have an average oxidation state of +3; and M? comprises one or more metal ions that together with the Mn and any excess proportion of lithium, “d”, have a combined average oxidation state between +3.5 and +4. The Li1+dMn2?z?dM?zO4 component comprises a spinel structure, each of the Li2MO3 and the LiM?O2 components comprise layered structures, and at least one of M, M?, and M? comprises Co. Cells and batteries comprising the electrode material also are described.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: September 29, 2020
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. Thackeray, Jason R. Croy, Brandon R. Long, Joong Sun Park, Eungje Lee
  • Patent number: 10573889
    Abstract: An electrode for a lithium-ion cell comprising a ‘layered-spinel’ composite oxide material is disclosed. The ‘layered-spinel’ can be a material of formula xLiMO2.(1?x)LiyM?zO4, wherein 0<x<1; LiMO2 is a lithium metal oxide having a layered structure in which M comprises one or more transition metals and optionally lithium, and has a combined average oxidation state of +3; and LiyM?zO4 is a lithium metal oxide having a spinel structure, 1?y?1.33, 1.66?z?2, and M? comprises one or more transition metals, and has a combined average metal oxidation state in the range of about +3.5 to about +4.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: February 25, 2020
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. Thackeray, Jason R. Croy, Brandon R. Long, Eungje Lee, Joong Sun Park
  • Publication number: 20190341618
    Abstract: An electrode comprises an electrode core. A composite bilayer coating is conformally disposed on the electrode core. The composite bilayer coating comprises a first layer disposed on at least a portion of the electrode core. The first layer comprises a metal fluoride, a metal oxide or a metal sulfide. A second layer is disposed on the first layer and comprises a metal fluoride, a metal oxide or a metal sulfide.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 7, 2019
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Anil U. Mane, Jason R. Croy, Jeffrey W. Elam, Mahalingam Balasubramanian
  • Publication number: 20190207214
    Abstract: Cation-stabilized materials and compositions are described herein, which suppress the structural and electrochemical instability of lithium-metal-oxide spinel and lithiated lithium-metal-oxide spinel electrodes for lithium batteries, notably lithium-ion batteries. These stabilized materials are attractive as positive electrodes for lithium batteries in their own right or when used as a structural component to stabilize layered metal oxide electrode systems, such as a two-component ‘layered-layered’ system or a multi-component ‘layered-layered-spinel’ system, as defined by the phase diagram and compositional space of each system.
    Type: Application
    Filed: December 27, 2018
    Publication date: July 4, 2019
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Eungje LEE, Jason R. CROY
  • Publication number: 20190109320
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 11, 2019
    Applicant: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy
  • Patent number: 10177365
    Abstract: The fabrication of robust interfaces between transition metal oxides and non-aqueous electrolytes is one of the great challenges of lithium ion batteries. Atomic layer deposition (ALD) of aluminum tungsten fluoride (AlWxFy) improves the electrochemical stability of LiCoO2. AlWxFy thin films were deposited by combining trimethylaluminum and tungsten hexafluoride. in-situ quartz crystal microbalance and transmission electron microscopy studies show that the films grow in a layer-by-layer fashion and are amorphous nature. Ultrathin AlWxFy coatings (<10 ?) on LiCoO2 significantly enhance stability relative to bare LiCoO2 when cycled to 4.4 V. The coated LiCoO2 exhibited superior rate capability (up to 400 mA/g) and discharge capacities at a current of 400 mA/g were 51% and 92% of the first cycle capacities for the bare and AlWxFy coated materials.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: January 8, 2019
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam, Joong Sun Park, Jason R. Croy