Patents by Inventor Jason R. Spence

Jason R. Spence has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11478571
    Abstract: Disclosed herein are synthetic hydrogel useful for the generation, storage and administration of cellular structures such as spheroids and organoids.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: October 25, 2022
    Assignees: Georgia Tech Research Corporation, The Regents of the University of Michigan
    Inventors: Ricardo Cruz-Acuna, Andres J. Garcia, Asma Nusrat, Jason R. Spence, Miguel Quiros
  • Patent number: 10781425
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 22, 2020
    Assignee: Children's Hospital Medical Center
    Inventors: James M. Wells, Aaron M. Zorn, Jason R. Spence, Noah F. Shroyer
  • Publication number: 20200190478
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Application
    Filed: October 11, 2019
    Publication date: June 18, 2020
    Inventors: James M. Wells, Aaron M. Zorn, Jason R. Spence, Noah F. Shroyer
  • Publication number: 20200078493
    Abstract: Disclosed herein are synthetic hydrogel useful for the generation, storage and administration of cellular structures such as spheroids and organoids.
    Type: Application
    Filed: March 9, 2018
    Publication date: March 12, 2020
    Inventors: Ricardo CRUZ-ACUNA, Andres J. GARCIA, Asma NUSRAT, Jason R. SPENCE, Miguel QUIROS
  • Publication number: 20170362573
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 21, 2017
    Inventors: James M. Wells, Aaron M. Zorn, Jason R. Spence, Noah F. Shroyer
  • Patent number: 9719068
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: August 1, 2017
    Assignee: Children's Hospital Medical Center
    Inventors: James M. Wells, Jason R. Spence, Aaron M. Zorn, Noah F. Shroyer
  • Publication number: 20130137130
    Abstract: The generation of complex organ tissues from human embryonic and pluripotent stem cells (PSCs) remains a major challenge for translational studies. It is shown that PSCs can be directed to differentiate into intestinal tissue in vitro by modulating the combinatorial activities of several signaling pathways in a step-wise fashion, effectively recapitulating in vivo fetal intestinal al development. The resulting intestinal “organoids” were three-dimensional structures consisting of a polarized, columnar epithelium surrounded by mesenchyme that included a smooth muscle-like layer. The epithelium was patterned into crypt-like SOX9-positive proliferative zones and villus-like structures with all of the major functional cell types of the intestine. The culture system is used to demonstrate that expression of NEUROG3, a pro-endocrine transcription factor mutated in enteric anendocrinosis is sufficient to promote differentiation towards the enteroendocrine cell lineage.
    Type: Application
    Filed: May 6, 2011
    Publication date: May 30, 2013
    Applicant: CHILDREN'S HOSPITAL MEDICAL CENTER
    Inventors: James M. Wells, Jason R. Spence, Aaron M. Zorn, Noah F. Shroyer