Patents by Inventor Jason Richard Bell

Jason Richard Bell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10550350
    Abstract: The present invention generally relates to compositions for use in lubricating oils. In certain aspects, the present invention is generally directed to boroxine compounds having alkyl groups where one or more of the alkyl groups contains at least 8 carbon atoms. Such compounds may present improved hydrolytic stability, compared to other boroxine compounds. Such boroxine compounds may be used, for example, to improve seal compatibility in an engine. Other aspects of the invention are generally directed to systems and methods for making such boroxine compounds, engine oils containing such boroxine compounds, methods of using such boroxine compounds, or the like.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: February 4, 2020
    Assignee: AFTON CHEMICAL CORPORATION
    Inventors: Jason Richard Bell, Carl W. Bennett
  • Publication number: 20190106646
    Abstract: The present invention generally relates to compositions for use in lubricating oils. In certain aspects, the present invention is generally directed to boroxine compounds having alkyl groups where one or more of the alkyl groups contains at least 8 carbon atoms. Such compounds may present improved hydrolytic stability, compared to other boroxine compounds. Such boroxine compounds may be used, for example, to improve seal compatibility in an engine. Other aspects of the invention are generally directed to systems and methods for making such boroxine compounds, engine oils containing such boroxine compounds, methods of using such boroxine compounds, or the like.
    Type: Application
    Filed: November 10, 2016
    Publication date: April 11, 2019
    Applicant: Afton Chemical Corporation
    Inventors: Jason Richard Bell, Carl W. Bennett
  • Patent number: 8865094
    Abstract: A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1×104 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 21, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Huimin Luo, Rose Ann Boll, Jason Richard Bell, Sheng Dai
  • Publication number: 20140072485
    Abstract: A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1×104 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Huimin Luo, Rose Ann Boll, Jason Richard Bell, Sheng Dai