Patents by Inventor Jason S. Pelc

Jason S. Pelc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960131
    Abstract: Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: April 16, 2024
    Inventors: Michael J. Bishop, Vijay M. Iyer, Jason S. Pelc, Mario J. Costello
  • Publication number: 20240103224
    Abstract: Configurations for an optical splitter that includes a continuous curved reflector and methods thereof are disclosed. The optical splitter includes an input waveguide, one or more continuous curved reflector, and multiple output waveguides. The one or more continuous curved reflector may direct light toward the output waveguides. The optical splitter may include a single continuous curved reflector, or may include multiple continuous curved reflectors. In other instances, an optical splitter may include a lensed reflector that includes a plurality of continuous curved segments.
    Type: Application
    Filed: August 4, 2023
    Publication date: March 28, 2024
    Inventors: Mark A. Arbore, Jason S. Pelc
  • Publication number: 20240102856
    Abstract: Embodiments are directed to optical measurement systems that utilize multiple emitters to emit light during a measurement, as well as methods of performing measurements using these optical measurement systems. The optical measurement systems may include a light generation assembly that is configured to generate light via a light source unit, and a photonic integrated circuit that includes a launch group having a plurality of emitters. Each of these emitters is optically coupled to the light generation assembly to receive light generated from the light generation assembly, and may emit this light from a surface of the photonic integrated circuit. The optical measurement system may perform a measurement in which the light generation assembly generates light and each of the plurality of emitters simultaneously emit light received from the light generation assembly.
    Type: Application
    Filed: August 16, 2023
    Publication date: March 28, 2024
    Inventors: Matthew A. Terrel, David S. Gere, Alexander F. Sugarbaker, Thomas C. Greening, Jason S. Pelc, Mark A. Arbore
  • Publication number: 20240094468
    Abstract: Various embodiments disclosed herein describe photonic passive delay lines that have a waveguide wound into a plurality of straight segments and bends. The photonic passive delay lines are configured to reduce losses from parasitic modes of light generated at the bends. Embodiments of the photonic passive delay lines vary the dimensions of the straight segments to provide different amounts of dephasing between a mode of input light received by the photonic passive delay line and one or more parasitic modes.
    Type: Application
    Filed: August 16, 2023
    Publication date: March 21, 2024
    Inventors: Jason S. Pelc, Yu Miao, Mark A. Arbore, Meng Huang, Zhechao Wang
  • Publication number: 20240094566
    Abstract: Embodiments are directed to photonic integrated circuits that include a carrier-based phase shifter. The carrier-based phase shifter is configured as a PIN phase shifter with a pair of traces that delivers current through a PIN diode. The PIN phase shifter is configured such that current flows through the pair of traces in a common direction.
    Type: Application
    Filed: August 3, 2023
    Publication date: March 21, 2024
    Inventors: Jason S. Pelc, Wei Liu
  • Publication number: 20240069248
    Abstract: Anti-reflective optical structures are disclosed. The anti-reflective optical structures include sub-wavelength structures in order to produce one or more index of refraction gradients within the anti-reflective optical structures. The one or more index of refraction gradients can reduce reflection of light over a broad band of wavelengths.
    Type: Application
    Filed: March 9, 2023
    Publication date: February 29, 2024
    Inventors: Mohamed Mahmoud, Huiyang Deng, Satyarth Suri, Jason S. Pelc, Peter L. Chang
  • Publication number: 20240061280
    Abstract: Various embodiments disclosed herein describe optomechanical phase shifters. The optomechanical phase shifters may be configured with an asymmetry that improves the performance of the OM phase shifter as a function of wavelength. In some instances, the optomechanical phase shifter includes a section of a waveguide having an asymmetric cross-sectional shape. In other instances an optomechanical phase shifter is incorporated into a controllable optical switch, such that OM phase shifters may be actuated to selectively route light to different outputs of the controllable optical switch.
    Type: Application
    Filed: August 3, 2023
    Publication date: February 22, 2024
    Inventors: Mark A. Arbore, Jason S. Pelc
  • Publication number: 20230358964
    Abstract: Optical splitters and system and methods utilizing optical splitters are disclosed. The optical splitter may include an input waveguide, a free propagation region, and a plurality output waveguides. The output waveguides are connected to the free propagation region at a corresponding plurality of output ports that are positioned along a non-circular path. The output ports may be positioned such that the output waveguides have the same width.
    Type: Application
    Filed: May 3, 2023
    Publication date: November 9, 2023
    Inventors: Mohsen Kamandar Dezfouli, Maria Anagnosti, Jason S. Pelc, Yu Miao
  • Publication number: 20230324286
    Abstract: Various embodiments disclosed herein describe optical measurement systems for characterizing a sample. The optical measurement systems may selectively emit light from different numbers of launch groups, and may include a multi-stage optical switch network that may be controlled to route light to a desired number of launch groups. The optical measurement systems may further measure light using a corresponding number of detector groups. The optical measurement systems may perform measurements using a plurality of different wavelengths, where different groups of these wavelengths may be measured using different numbers of launch groups (as well as corresponding detector groups).
    Type: Application
    Filed: March 14, 2023
    Publication date: October 12, 2023
    Inventors: Jason S. Pelc, Mark A. Arbore, Matthew A. Terrel, Thomas C. Greening, Yongming Tu, Lucia Gan
  • Publication number: 20230100317
    Abstract: Configurations for a modal interference device used for wavelength locking are disclosed. The modal interference device may be an interference device that includes an input waveguide, an interference waveguide, and an output waveguide. A fundamental mode of light may be launched into the input waveguide and the interference waveguide may receive the fundamental mode and generate a higher order mode of light, where the two modes of light may be superimposed while propagating through the interference waveguide. The two modes of light may be received at an output waveguide that collapses the two modes into a single mode and generates an output signal corresponding to the interference between the two modes of light. The output signal may be used to wavelength lock a measured wavelength to a target wavelength. The multiple output waveguides may produce output signals that have dead zones that do not align with one another for any wavelength in the wavelength range of interest.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 30, 2023
    Inventors: Jason S. Pelc, Mark Alan Arbore, Yi-Kuei Wu
  • Publication number: 20220236503
    Abstract: Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
    Type: Application
    Filed: January 13, 2022
    Publication date: July 28, 2022
    Inventors: Michael J. Bishop, Vijay M. Iyer, Jason S. Pelc, Mario J. Costello
  • Patent number: 11226459
    Abstract: Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: January 18, 2022
    Inventors: Michael J. Bishop, Vijay M. Iyer, Jason S. Pelc, Mario J. Costello
  • Publication number: 20210033805
    Abstract: Described herein is an integrated photonics device including a light emitter, integrated edge outcoupler(s), optics, and a detector array. The device can include a hermetically sealed enclosure. The hermetic seal can reduce the amount of moisture and/or contamination that may affect the measurement, analysis, and/or the function of the individual components within the sealed enclosure. Additionally or alternatively, the hermetic seal can be used to protect the components within the enclosure from environmental contamination induced during the manufacturing, packaging, and/or shipping process. The outcoupler(s) can be formed by creating one or more pockets in the layers of a die. Outcoupler material can be formed in the pocket and, optionally, subsequent layers can be deposited on top. The edge of the die can be polished until a targeted polish plane is achieved. Once the outcoupler is formed, the die can be flipped over and other components can be formed.
    Type: Application
    Filed: February 13, 2019
    Publication date: February 4, 2021
    Inventors: Michael J. Bishop, Vijay M. Iyer, Jason S. Pelc, Mario J. Costello
  • Patent number: 10634843
    Abstract: An optoelectronic device includes a substrate, having a recess formed therein. An optical isolator is mounted in the recess. A laser includes a stack of epitaxial layers on the substrate and emits a beam of radiation toward the recess along a direction parallel to a surface of the substrate. A waveguide directs the beam emitted by the laser into the optical isolator.
    Type: Grant
    Filed: February 10, 2019
    Date of Patent: April 28, 2020
    Assignee: APPLE INC.
    Inventors: Igal I. Bayn, Andrew J. Sutton, Alexander Shpunt, Jason S. Pelc, Mark A. Arbore
  • Publication number: 20190324203
    Abstract: An optoelectronic device includes a substrate, having a recess formed therein. An optical isolator is mounted in the recess. A laser includes a stack of epitaxial layers on the substrate and emits a beam of radiation toward the recess along a direction parallel to a surface of the substrate. A waveguide directs the beam emitted by the laser into the optical isolator.
    Type: Application
    Filed: February 10, 2019
    Publication date: October 24, 2019
    Inventors: Igal I. Bayn, Andrew J. Sutton, Alexander Shpunt, Jason S. Pelc, Mark A. Arbore