Patents by Inventor Jason Schaefer
Jason Schaefer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12189128Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.Type: GrantFiled: April 7, 2023Date of Patent: January 7, 2025Assignee: Magic Leap, Inc.Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Nicole Elizabeth Samec, Nastasja U. Robaina, Vaibhav Mathur, Timothy Mark Dalrymple, Jason Schaefer, Clinton Carlisle, Hui-Chuan Cheng, Chulwoo Oh, Philip Premysler, Xiaoyang Zhang, Adam C. Carlson
-
Patent number: 12019239Abstract: A method for characterizing a digital color camera includes, for each of three primary colors used in a field sequential color virtual image, determining a conversion model for each color using RGB values and the color-measurement values. For each primary color, the method includes illuminating a display device using an input light beam of a primary color having spectral properties representative of a light beam in a virtual image in a wearable device. The method includes capturing, with the digital color camera, an image of the display device, and determining, from the image, RGB values for each primary color. The method includes capturing, with a color-measurement device, a color-measurement value associated with each corresponding primary color at the display device, thereby acquiring a color-measurement value in an absolute color space. A conversion model for each color is determined using RGB values and the color-measurement values.Type: GrantFiled: January 21, 2021Date of Patent: June 25, 2024Assignee: Magic Leap, Inc.Inventors: Miller Harry Schuck, III, Lei Zhang, Etienne Gregoire Grossmann, Nukul Sanjay Shah, Ohad Zohar, Robert Zito, Nicholas Ihle Morley, Jason Schaefer, Zhiheng Jia, Eric C. Browy, Marshall Charles Capps, Kazunori Tanaka, Grace Vesom, John Monos
-
Publication number: 20230333369Abstract: Optical systems and methods for operation thereof are disclosed. A delimited zone is defined as a function of distance from the optical system based on a VAC limit, the delimited zone having at least one distance threshold. A virtual distance of a virtual depth plane from the optical system at which a virtual object is to be displayed is determined. It is determined whether the virtual distance is outside the delimited zone by comparing the virtual distance to the at least one distance threshold. A collimated pixel beam associated with the virtual object is generated by a projector of the optical system. The collimated pixel beam is modified to generate a modified pixel beam if the virtual distance is outside the delimited zone. Modifying the collimated pixel beam includes converging the collimated pixel beam and/or reducing a diameter of the collimated pixel beam.Type: ApplicationFiled: June 23, 2023Publication date: October 19, 2023Applicant: Magic Leap, Inc.Inventors: Michael Anthony Klug, William Hudson Welch, Jason Schaefer, Björn Nicolaas Servatius Vlaskamp, Robert D. Tekolste, Michal Beau Dennison Vaughn
-
Publication number: 20230296904Abstract: In some embodiments, an augmented reality system includes at least one waveguide that is configured to receive and redirect light toward a user, and is further configured to allow ambient light from an environment of the user to pass therethrough toward the user. The augmented reality system also includes a first adaptive lens assembly positioned between the at least one waveguide and the environment, a second adaptive lens assembly positioned between the at least one waveguide and the user, and at least one processor operatively coupled to the first and second adaptive lens assemblies. Each lens assembly of the augmented reality system is selectively switchable between at least two different states in which the respective lens assembly is configured to impart at least two different optical powers to light passing therethrough, respectively.Type: ApplicationFiled: May 22, 2023Publication date: September 21, 2023Inventors: Jason Schaefer, Hui-Chuan Cheng, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Michael Anthony Klug
-
Patent number: 11726318Abstract: Optical systems and methods for operation thereof are disclosed. A delimited zone is defined as a function of distance from the optical system based on a VAC limit, the delimited zone having at least one distance threshold. A virtual distance of a virtual depth plane from the optical system at which a virtual object is to be displayed is determined. It is determined whether the virtual distance is outside the delimited zone by comparing the virtual distance to the at least one distance threshold. A collimated pixel beam associated with the virtual object is generated by a projector of the optical system. The collimated pixel beam is modified to generate a modified pixel beam if the virtual distance is outside the delimited zone. Modifying the collimated pixel beam includes converging the collimated pixel beam and/or reducing a diameter of the collimated pixel beam.Type: GrantFiled: December 9, 2020Date of Patent: August 15, 2023Assignee: Magic Leap, Inc.Inventors: Michael Anthony Klug, William Hudson Welch, Jason Schaefer, Björn Nicolaas Servatius Vlaskamp, Robert D. Tekolste, Michael Beau Dennison Vaughn
-
Publication number: 20230251492Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.Type: ApplicationFiled: April 7, 2023Publication date: August 10, 2023Inventors: Ivan Li Chuen YEOH, Lionel Ernest EDWIN, Nicole Elizabeth SAMEC, Nastasja U. ROBAINA, Vaibhav MATHUR, Timothy Mark DALRYMPLE, Jason SCHAEFER, Clinton CARLISLE, Hui-Chuan CHENG, Chulwoo OH, Philip PREMYSLER, Xiaoyang ZHANG, Adam C. CARLSON
-
Patent number: 11693247Abstract: In some embodiments, an augmented reality system includes at least one waveguide that is configured to receive and redirect light toward a user, and is further configured to allow ambient light from an environment of the user to pass therethrough toward the user. The augmented reality system also includes a first adaptive lens assembly positioned between the at least one waveguide and the environment, a second adaptive lens assembly positioned between the at least one waveguide and the user, and at least one processor operatively coupled to the first and second adaptive lens assemblies. Each lens assembly of the augmented reality system is selectively switchable between at least two different states in which the respective lens assembly is configured to impart at least two different optical powers to light passing therethrough, respectively.Type: GrantFiled: January 14, 2022Date of Patent: July 4, 2023Assignee: Magic Leap, Inc.Inventors: Jason Schaefer, Hui-Chuan Cheng, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Michael Anthony Klug
-
Patent number: 11644669Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.Type: GrantFiled: March 21, 2018Date of Patent: May 9, 2023Assignee: Magic Leap, Inc.Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Nicole Elizabeth Samec, Nastasja U. Robaina, Vaibhav Mathur, Timothy Mark Dalrymple, Jason Schaefer, Clinton Carlisle, Hui-Chuan Cheng, Chulwoo Oh, Philip Premysler, Xiaoyang Zhang, Adam C. Carlson
-
Patent number: 11556001Abstract: Described are optical fibers and scanning fiber displays comprising optical fibers. The disclosed optical fibers include a plurality of mass adjustment regions, such as gas-filled regions, positioned between a central waveguiding element and an outer periphery for reducing a mass of the optical fiber as compared to an optical fiber lacking the plurality of mass adjustment regions.Type: GrantFiled: March 8, 2021Date of Patent: January 17, 2023Assignee: Magic Leap, Inc.Inventors: Timothy Mark Dalrymple, Clinton Carlisle, Jason Schaefer, Andrew C. Duenner, Vaibhav Mathur
-
Publication number: 20220137418Abstract: In some embodiments, an augmented reality system includes at least one waveguide that is configured to receive and redirect light toward a user, and is further configured to allow ambient light from an environment of the user to pass therethrough toward the user. The augmented reality system also includes a first adaptive lens assembly positioned between the at least one waveguide and the environment, a second adaptive lens assembly positioned between the at least one waveguide and the user, and at least one processor operatively coupled to the first and second adaptive lens assemblies. Each lens assembly of the augmented reality system is selectively switchable between at least two different states in which the respective lens assembly is configured to impart at least two different optical powers to light passing therethrough, respectively.Type: ApplicationFiled: January 14, 2022Publication date: May 5, 2022Inventors: Jason Schaefer, Hui-Chuan Cheng, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Michael Anthony Klug
-
Patent number: 11249309Abstract: In some embodiments, an augmented reality system includes at least one waveguide that is configured to receive and redirect light toward a user, and is further configured to allow ambient light from an environment of the user to pass therethrough toward the user. The augmented reality system also includes a first adaptive lens assembly positioned between the at least one waveguide and the environment, a second adaptive lens assembly positioned between the at least one waveguide and the user, and at least one processor operatively coupled to the first and second adaptive lens assemblies. Each lens assembly of the augmented reality system is selectively switchable between at least two different states in which the respective lens assembly is configured to impart at least two different optical powers to light passing therethrough, respectively.Type: GrantFiled: June 12, 2018Date of Patent: February 15, 2022Assignee: Magic Leap, Inc.Inventors: Jason Schaefer, Hui-Chuan Cheng, David Manly, Jahja I. Trisnadi, Clinton Carlisle, Michael Anthony Klug
-
Publication number: 20210286171Abstract: Described are optical fibers and scanning fiber displays comprising optical fibers. The disclosed optical fibers include a plurality of mass adjustment regions, such as gas-filled regions, positioned between a central waveguiding element and an outer periphery for reducing a mass of the optical fiber as compared to an optical fiber lacking the plurality of mass adjustment regions.Type: ApplicationFiled: March 8, 2021Publication date: September 16, 2021Applicant: Magic Leap, Inc.Inventors: Timothy Mark Dalrymple, Clinton Carlisle, Jason Schaefer, Andrew C. Duenner, Vaibhav Mathur
-
Publication number: 20210231951Abstract: An augmented reality system includes a light source configured to generate a virtual light beam. The system also includes a light guiding optical element, the light guiding optical element is transparent to a first real-world light beam, wherein the virtual light beam enters the light guiding optical element, propagates through the light guiding optical element by total internal reflection (TIR) and exits the light guiding optical elements. The system also includes a lens disposed adjacent and exterior to the surface of the light guiding optical element. The lens is configured with a gradient tint that transmits less real-world light at a world side top portion of the lens and transmits more real-world light at a world side bottom portion of the lens, wherein rainbow artifacts, generated from inadvertent diffraction of the overhead real-world light by the light guiding optical element, is minimized.Type: ApplicationFiled: July 17, 2019Publication date: July 29, 2021Applicant: MAGIC LEAP, INC.Inventors: Daniel Roger DOMINGUEZ, Kevin MESSER, Jason SCHAEFER, Kiao LI
-
Publication number: 20210215536Abstract: A method for characterizing a digital color camera includes, for each of three primary colors used in a field sequential color virtual image, determining a conversion model for each color using RGB values and the color-measurement values. For each primary color, the method includes illuminating a display device using an input light beam of a primary color having spectral properties representative of a light beam in a virtual image in a wearable device. The method includes capturing, with the digital color camera, an image of the display device, and determining, from the image, RGB values for each primary color. The method includes capturing, with a color-measurement device, a color-measurement value associated with each corresponding primary color at the display device, thereby acquiring a color-measurement value in an absolute color space. A conversion model for each color is determined using RGB values and the color-measurement values.Type: ApplicationFiled: January 21, 2021Publication date: July 15, 2021Applicant: Magic Leap, Inc.Inventors: Miller Harry Schuck, III, Lei Zhang, Etienne Gregoire Grossmann, Nukul Sanjay Shah, Ohad Zohar, Robert Zito, Nicholas Ihle Morley, Jason Schaefer, Zhiheng Jia, Eric C. Browy, Marshall Charles Capps, Kazunori Tanaka, Grace Vesom, John Monos
-
Publication number: 20210173204Abstract: Optical systems and methods for operation thereof are disclosed. A delimited zone is defined as a function of distance from the optical system based on a VAC limit, the delimited zone having at least one distance threshold. A virtual distance of a virtual depth plane from the optical system at which a virtual object is to be displayed is determined. It is determined whether the virtual distance is outside the delimited zone by comparing the virtual distance to the at least one distance threshold. A collimated pixel beam associated with the virtual object is generated by a projector of the optical system. The collimated pixel beam is modified to generate a modified pixel beam if the virtual distance is outside the delimited zone. Modifying the collimated pixel beam includes converging the collimated pixel beam and/or reducing a diameter of the collimated pixel beam.Type: ApplicationFiled: December 9, 2020Publication date: June 10, 2021Applicant: Magic Leap, Inc.Inventors: Michael Anthony Klug, William Hudson Welch, Jason Schaefer, Björn Nicolaas Servatius Vlaskamp, Robert D. Tekolste, Michael Beau Dennison Vaughn
-
Patent number: 11022748Abstract: Techniques are described for using confinement structures and/or pattern gratings to reduce or prevent the wicking of sealant polymer (e.g., glue) into the optically active areas of a multi-layered optical assembly. A multi-layered optical structure may include multiple layers of substrate imprinted with waveguide grating patterns. The multiple layers may be secured using an edge adhesive, such as a resin, epoxy, glue, and so forth. A confinement structure such as an edge pattern may be imprinted along the edge of each layer to control and confine the capillary flow of the edge adhesive and prevent the edge adhesive from wicking into the functional waveguide grating patterns of the layers. Moreover, the edge adhesive may be carbon doped or otherwise blackened to reduce the reflection of light off the edge back into the interior of the layer, thus improving the optical function of the assembly.Type: GrantFiled: February 7, 2019Date of Patent: June 1, 2021Assignee: Molecular Imprints, Inc.Inventors: Michael Nevin Miller, Frank Y. Xu, Vikramjit Singh, Eric C. Browy, Jason Schaefer, Robert D. TeKolste, Victor Kai Liu, Samarth Bhargava, Jeffrey Dean Schmulen, Brian T. Schowengerdt
-
Patent number: 11002752Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a cooling, heating and fan arrangement for maintaining a predetermined optimum temperature of the samples during testing; a visual, circumferential and axial alignment system for aligning the samples within the carousel; a transfer system for transferring the samples from the carousel to the centrifuge; a balancing system of minimizing the rotational vibrations of the centrifuge; a safety system and anti-tipping design for the sample containing system; liquid dispensing arms for dispensing the buffered saline solution; and discharge ports for discharging and disposing of the liquid removed from the samples to a location external of the system.Type: GrantFiled: March 22, 2019Date of Patent: May 11, 2021Assignees: POCARED Diagnostics LTD., Battelle Memorial InstituteInventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
-
Patent number: 10976540Abstract: Described are optical fibers and scanning fiber displays comprising optical fibers. The disclosed optical fibers include a plurality of mass adjustment regions, such as gas-filled regions, positioned between a central waveguiding element and an outer periphery for reducing a mass of the optical fiber as compared to an optical fiber lacking the plurality of mass adjustment regions.Type: GrantFiled: September 9, 2019Date of Patent: April 13, 2021Assignee: Magic Leap, Inc.Inventors: Timothy Mark Dalrymple, Clinton Carlisle, Jason Schaefer, Andrew C. Duenner, Vaibhav Mathur
-
Publication number: 20200400576Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.Type: ApplicationFiled: September 8, 2020Publication date: December 24, 2020Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico
-
Patent number: 10801962Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optical cup or cuvette having a tapered surface; an optics system including an optical reader and a thermal controller; an optical analyzer; a cooling system; and an improved spectrometer. The system may utilize the disposable cartridge in the sample processor and the optical cup or cuvette in the optical analyzer.Type: GrantFiled: August 8, 2018Date of Patent: October 13, 2020Assignee: POCARED Diagnostics LTD.Inventors: Gal Ingber, William G. Atterbury, Dave Holley, Thomas A. Klausing, John S. Laudo, Jason A. Schaefer, Sherwood Talbert, John Tallarico