Patents by Inventor Jason Schaller

Jason Schaller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10468292
    Abstract: A shutter disk suitable for shield a substrate support in a physical vapor deposition chamber is provided. In one embodiment, the shutter disk includes a disk-shaped body having an outer diameter disposed between a top surface and a bottom surface. The disk-shape body includes a double step connecting the bottom surface to the outer diameter.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 5, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Karl M. Brown, Jason Schaller
  • Patent number: 9696097
    Abstract: Embodiments of multi-substrate thermal management apparatus are provided herein. In some embodiments, a multi-substrate thermal management apparatus includes a plurality of plates vertically arranged above one another; a plurality of channels extending through each of the plurality of plates; a supply manifold including a supply channel coupled to the plurality of plates at first locations; and a return manifold including a return channel coupled to the plurality of plates via a plurality of legs at second locations, wherein the supply and return channels are fluidly coupled to the plurality of channels to flow a heat transfer fluid through the plurality of plates.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: July 4, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kallol Bera, Kim Vellore, Andrew Constant, Jacob Newman, Jeffrey Blahnik, Jason Schaller, William Weaver, Robert Vopat, Benjamin Riordon
  • Publication number: 20160358809
    Abstract: A shutter disk suitable for shield a substrate support in a physical vapor deposition chamber is provided. In one embodiment, the shutter disk includes a disk-shaped body having an outer diameter disposed between a top surface and a bottom surface. The disk-shape body includes a double step connecting the bottom surface to the outer diameter.
    Type: Application
    Filed: August 23, 2016
    Publication date: December 8, 2016
    Inventors: Karl M. BROWN, Jason SCHALLER
  • Publication number: 20160033205
    Abstract: Embodiments of multi-substrate thermal management apparatus are provided herein. In some embodiments, a multi-substrate thermal management apparatus includes a plurality of plates vertically arranged above one another; a plurality of channels extending through each of the plurality of plates; a supply manifold including a supply channel coupled to the plurality of plates at first locations; and a return manifold including a return channel coupled to the plurality of plates via a plurality of legs at second locations, wherein the supply and return channels are fluidly coupled to the plurality of channels to flow a heat transfer fluid through the plurality of plates.
    Type: Application
    Filed: October 1, 2014
    Publication date: February 4, 2016
    Inventors: KALLOL BERA, KIM VELLORE, ANDREW CONSTANT, JACOB NEWMAN, JEFFREY BLAHNIK, JASON SCHALLER, WILLIAM WEAVER, ROBERT VOPAT, BENJAMIN RIORDON
  • Patent number: 9202734
    Abstract: A manufacturing system includes a gantry module, having an end effector, for moving workpieces from a conveyor system to a working area, such as a swap module. The swap module removes a matrix of processed workpieces from a load lock and place a matrix of unprocessed workpieces in its place. The processed workpieces are then moved by the gantry module back to the conveyor. Due to the speed of operation, the end effector may build up excessive electrostatic charge. To remove this built up charge, grounded electrically-conductive brushes are strategically positioned so that, as the end effector moves during normal operation, it comes in contact with these brushes. This removes this built up charge on the end effector, without affecting throughput. In another embodiment, the end effector moves over the brushes while the swap module is moving matrix to and from the load lock.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: December 1, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jason Schaller, Robert Brent Vopat
  • Publication number: 20150249030
    Abstract: A manufacturing system includes a gantry module, having an end effector, for moving workpieces from a conveyor system to a working area, such as a swap module. The swap module removes a matrix of processed workpieces from a load lock and place a matrix of unprocessed workpieces in its place. The processed workpieces are then moved by the gantry module back to the conveyor. Due to the speed of operation, the end effector may build up excessive electrostatic charge. To remove this built up charge, grounded electrically-conductive brushes are strategically positioned so that, as the end effector moves during normal operation, it comes in contact with these brushes. This removes this built up charge on the end effector, without affecting throughput. In another embodiment, the end effector moves over the brushes while the swap module is moving matrix to and from the load lock.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 3, 2015
    Inventors: Jason Schaller, Robert Brent Vopat
  • Patent number: 9064920
    Abstract: A manufacturing system includes a gantry module, having an end effector, for moving workpieces from a conveyor system to a working area, such as a swap module. The swap module removes a matrix of processed workpieces from a load lock and place a matrix of unprocessed workpieces in its place. The processed workpieces are then moved by the gantry module back to the conveyor. Due to the speed of operation, the end effector may build up excessive electrostatic charge. To remove this built up charge, grounded electrically-conductive brushes are strategically positioned so that, as the end effector moves during normal operation, it comes in contact with these brushes. This removes this built up charge on the end effector, without affecting throughput. In another embodiment, the end effector moves over the brushes while the swap module is moving matrix to and from the load lock.
    Type: Grant
    Filed: July 22, 2012
    Date of Patent: June 23, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jason Schaller, Robert Brent Vopat
  • Patent number: 8945308
    Abstract: The present invention relates to a cluster tool for processing semiconductor substrates. One embodiment of the present invention provides a mainframe for a cluster tool comprising a transfer chamber having a substrate transferring robot disposed therein. The substrate transferring robot is configured to shuttle substrates among one or more processing chambers directly or indirectly connected to the transfer chamber. The mainframe further comprises a shutter disk shelf configured to store one or more shutter disks to be used by the one or more processing chambers, wherein the shutter disk shelf is accessible to the substrate transferring robot so that the substrate transferring robot can transfer the one or more shutter disks between the shutter disk shelf and the one or more processing chambers directly or indirectly connected to the transfer chamber.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: February 3, 2015
    Assignee: Applied Materials, Inc.
    Inventor: Jason Schaller
  • Patent number: 8920103
    Abstract: A rotary end effector for use for the high speed handling of workpieces, such as solar cells, is disclosed. The rotary end effector is capable of infinite rotation. The rotary end effector has a gripper bracket, capable of supporting a plurality of grippers, arranged in any configuration, such as a 4×1 linear array. Each gripper is in communication with a suction system, wherein, in some embodiments, each gripper can be selectively enabled and disabled. Provisions are also made to allow electrical components, such as proximity sensors, to be mounted on the rotating gripper bracket. In another embodiment, an end effector with multiple surfaces, each with a plurality of grippers, is used.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: December 30, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jason Schaller, Robert Vopat
  • Publication number: 20140252787
    Abstract: A gripper system which utilizes two different suction systems is disclosed. This gripper system utilizes one suction system to pick up an item, while using the second suction system to hold the item. In some embodiments, a Venturi device based suction system is used as the first suction system to pick up the item, as this type of system is proficient at picking up items without requiring initial contact to create a seal. In some embodiments, a vacuum based system is used as the second suction system, as this type of system is able to hold items cost effectively.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 11, 2014
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jason Schaller, Robert Brent Vopat
  • Patent number: 8777284
    Abstract: A gripper system which utilizes two different suction systems is disclosed. This gripper system utilizes one suction system to pick up an item, while using the second suction system to hold the item. In some embodiments, a Venturi device based suction system is used as the first suction system to pick up the item, as this type of system is proficient at picking up items without requiring initial contact to create a seal. In some embodiments, a vacuum based system is used as the second suction system, as this type of system is able to hold items cost effectively.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 15, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Jason Schaller, Robert Brent Vopat
  • Publication number: 20140023461
    Abstract: A manufacturing system includes a gantry module, having an end effector, for moving workpieces from a conveyor system to a working area, such as a swap module. The swap module removes a matrix of processed workpieces from a load lock and place a matrix of unprocessed workpieces in its place. The processed workpieces are then moved by the gantry module back to the conveyor. Due to the speed of operation, the end effector may build up excessive electrostatic charge. To remove this built up charge, grounded electrically-conductive brushes are strategically positioned so that, as the end effector moves during normal operation, it comes in contact with these brushes. This removes this built up charge on the end effector, without affecting throughput. In another embodiment, the end effector moves over the brushes while the swap module is moving matrix to and from the load lock.
    Type: Application
    Filed: July 22, 2012
    Publication date: January 23, 2014
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Jason Schaller, Robert Brent Vopat
  • Publication number: 20130302126
    Abstract: A rotary end effector for use for the high speed handling of workpieces, such as solar cells, is disclosed. The rotary end effector is capable of infinite rotation. The rotary end effector has a gripper bracket, capable of supporting a plurality of grippers, arranged in any configuration, such as a 4×1 linear array. Each gripper is in communication with a suction system, wherein, in some embodiments, each gripper can be selectively enabled and disabled. Provisions are also made to allow electrical components, such as proximity sensors, to be mounted on the rotating gripper bracket. In another embodiment, an end effector with multiple surfaces, each with a plurality of grippers, is used.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 14, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Jason Schaller, Robert Vopat
  • Publication number: 20130277999
    Abstract: A gripper system which utilizes two different suction systems is disclosed. This gripper system utilizes one suction system to pick up an item, while using the second suction system to hold the item. In some embodiments, a Venturi device based suction system is used as the first suction system to pick up the item, as this type of system is proficient at picking up items without requiring initial contact to create a seal. In some embodiments, a vacuum based system is used as the second suction system, as this type of system is able to hold items cost effectively.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Jason Schaller, Robert Brent Vopat
  • Patent number: 8481960
    Abstract: A system and method are disclosed for controlling an ion beam. A deceleration lens is disclosed for use in an ion implanter. The lens may include a suppression electrode, first and second focus electrodes, and first and second shields. The shields may be positioned between upper and lower portions of the suppression electrode. The first and second shields are positioned between the first focus electrode and an end station of the ion implanter. Thus positioned, the first and second shields protect support surfaces of said first and second focus electrodes from deposition of back-streaming particles generated from said ion beam. In some embodiments, the first and second focus electrodes may be adjustable to enable the electrode surfaces to be adjusted with respect to a direction of the ion beam. By adjusting the angle of the focus electrodes, parallelism of the ion beam can be controlled. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: July 9, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Svetlana Radovanov, Jason Schaller, Richard White, Kevin Verrier, James Blanchette, Bon-Woong Koo, Eric Hermanson, Kevin Daniels
  • Publication number: 20130108406
    Abstract: A system and method for receiving unprocessed workpieces, moving them, orienting them and placing them in a load lock, or other end point is disclosed. The system includes a gantry module for moving workpieces from a conveyor system to a swap module. The swap module is used to remove a carrier or matrix of processed workpieces from a load lock and place a carrier of matrix of unprocessed workpieces in its place. The processed workpieces are then moved by the gantry module back to the conveyor. The gantry module may have X, Y, Z and rotational actuators and include an end effector having multiple grippers. A method of aligning a plurality of workpieces on the end effector so that the plurality can be transported at the same time is also disclosed.
    Type: Application
    Filed: May 14, 2012
    Publication date: May 2, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Jason Schaller, Robert Vopat, Charles T. Carlson, Malcolm N. Daniel, JR., Aaron Webb, William T. Weaver
  • Publication number: 20120325140
    Abstract: The present invention relates to a cluster tool for processing semiconductor substrates. One embodiment of the present invention provides a mainframe for a cluster tool comprising a transfer chamber having a substrate transferring robot disposed therein. The substrate transferring robot is configured to shuttle substrates among one or more processing chambers directly or indirectly connected to the transfer chamber. The mainframe further comprises a shutter disk shelf configured to store one or more shutter disks to be used by the one or more processing chambers, wherein the shutter disk shelf is accessible to the substrate transferring robot so that the substrate transferring robot can transfer the one or more shutter disks between the shutter disk shelf and the one or more processing chambers directly or indirectly connected to the transfer chamber.
    Type: Application
    Filed: August 20, 2012
    Publication date: December 27, 2012
    Applicant: Applied Materials, Inc.
    Inventor: Jason Schaller
  • Publication number: 20120001087
    Abstract: A system and method are disclosed for controlling an ion beam. A deceleration lens is disclosed for use in an ion implanter. The lens may include a suppression electrode, first and second focus electrodes, and first and second shields. The shields may be positioned between upper and lower portions of the suppression electrode. The first and second shields are positioned between the first focus electrode and an end station of the ion implanter. Thus positioned, the first and second shields protect support surfaces of said first and second focus electrodes from deposition of back-streaming particles generated from said ion beam. In some embodiments, the first and second focus electrodes may be adjustable to enable the electrode surfaces to be adjusted with respect to a direction of the ion beam. By adjusting the angle of the focus electrodes, parallelism of the ion beam can be controlled. Other embodiments are described and claimed.
    Type: Application
    Filed: June 23, 2011
    Publication date: January 5, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Svetlana Radovanov, Jason Schaller, Richard M. White, Kevin R. Verrier, James Blanchette, Bon-Woong Koo, Eric d. Hermanson, Kevin Daniels
  • Publication number: 20100089315
    Abstract: A shutter disk suitable for shield a substrate support in a physical vapor deposition chamber is provided. In one embodiment, the shutter disk includes a disk-shaped body having an outer diameter disposed between a top surface and a bottom surface. The disk-shape body includes a double step connecting the bottom surface to the outer diameter.
    Type: Application
    Filed: September 21, 2009
    Publication date: April 15, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Karl M. Brown, Jason Schaller
  • Publication number: 20080276867
    Abstract: The present invention relates to a cluster tool for processing semiconductor substrates. One embodiment of the present invention provides a mainframe for a cluster tool comprising a transfer chamber having a substrate transferring robot disposed therein. The substrate transferring robot is configured to shuttle substrates among one or more processing chambers directly or indirectly connected to the transfer chamber. The mainframe further comprises a shutter disk shelf configured to store one or more shutter disks to be used by the one or more processing chambers, wherein the shutter disk shelf is accessible to the substrate transferring robot so that the substrate transferring robot can transfer the one or more shutter disks between the shutter disk shelf and the one or more processing chambers directly or indirectly connected to the transfer chamber.
    Type: Application
    Filed: May 9, 2008
    Publication date: November 13, 2008
    Inventor: Jason Schaller