Patents by Inventor Jason Sebastian

Jason Sebastian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11780003
    Abstract: Provided herein are titanium alloys that can achieve a combination of high strength and high toughness or elongation, and a method to produce the alloys. By tolerating iron, oxygen, and other incidental elements and impurities, the alloys enable the use of lower quality scrap as raw materials. The alloys are castable and can form ?-phase laths in a basketweave morphology by a commercially feasible heat treatment that does not require hot-working or rapid cooling rates. The alloys comprise, by weight, about 3.0% to about 6.0% aluminum, 0% to about 1.5% tin, about 2.0% to about 4.0% vanadium, about 0.5% to about 4.5% molybdenum, about 1.0% to about 2.5% chromium, about 0.20% to about 0.55% iron, 0% to about 0.35% oxygen, 0% to about 0.007% boron, and 0% to about 0.60% other incidental elements and impurities, the balance of weight percent comprising titanium. There exists an unmet need to produce titanium alloys for use in aerospace applications which have a refined equiaxed grain structure.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: October 10, 2023
    Assignee: QuesTek Innovations LLC
    Inventors: James A. Wright, Jason Sebastian, Herng-Jeng Jou, Thomas S. Kozmel, II, Clay A. Houser
  • Publication number: 20230154180
    Abstract: A vehicle can be configured to include a body having a body bottom conjoined with a body sidewall and a body top forming a body cavity. The body top includes a body top opening and the body sidewall includes a body sidewall opening. The vehicle can include a payload housing having a payload bottom conjoined with a payload housing sidewall and a payload housing top forming a payload housing cavity, wherein the payload housing cavity is configured to hold at least one operating module for the vehicle. The vehicle can include at least one arm. The vehicle can include at least one interlocking arrangement of the body top opening or body side wall configured to removably secure the payload housing and the at least one arm to the body. Each of the body, the payload housing, and the at least one arm can be structured with additive manufactured material.
    Type: Application
    Filed: November 23, 2022
    Publication date: May 18, 2023
    Applicant: Booz Allen Hamilton Inc.
    Inventors: Jason Sebastian, Robyn Kincade, Catherine Henderson, Bradley Evans, Jacques Davignon, Ryan Fernandez, Jeff Dowell
  • Publication number: 20200257904
    Abstract: A vehicle can be configured to include a body having a body bottom conjoined with a body sidewall and a body top forming a body cavity. The body top includes a body top opening and the body sidewall includes a body sidewall opening. The vehicle can include a payload housing having a payload bottom conjoined with a payload housing sidewall and a payload housing top forming a payload housing cavity, wherein the payload housing cavity is configured to hold at least one operating module for the vehicle. The vehicle can include at least one arm. The vehicle can include at least one interlocking arrangement of the body top opening or body side wall configured to removably secure the payload housing and the at least one arm to the body. Each of the body, the payload housing, and the at least one arm can be structured with additive manufactured material.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 13, 2020
    Applicant: Booz Allen Hamilton Inc.
    Inventors: Jason Sebastian, Robyn Kincade, Catherine Henderson, Bradley Evans, Jacques Davignon, Ryan Fernandez, Jeff Dowell
  • Publication number: 20200078860
    Abstract: Provided herein are titanium alloys that can achieve a combination of high strength and high toughness or elongation, and a method to produce the alloys. By tolerating iron, oxygen, and other incidental elements and impurities, the alloys enable the use of lower quality scrap as raw materials. The alloys are castable and can form ?-phase laths in a basketweave morphology by a commercially feasible heat treatment that does not require hot-working or rapid cooling rates. The alloys comprise, by weight, about 3.0% to about 6.0% aluminum, 0% to about 1.5% tin, about 2.0% to about 4.0% vanadium, about 0.5% to about 4.5% molybdenum, about 1.0% to about 2.5% chromium, about 0.20% to about 0.55% iron, 0% to about 0.35% oxygen, 0% to about 0.007% boron, and 0% to about 0.60% other incidental elements and impurities, the balance of weight percent comprising titanium. There exists an unmet need to produce titanium alloys for use in aerospace applications which have a refined equiaxed grain structure.
    Type: Application
    Filed: November 12, 2019
    Publication date: March 12, 2020
    Inventors: James A. Wright, Jason Sebastian, Herng-Jeng Jou, Thomas S. Kozmel, II, Clay A. Houser
  • Patent number: 10471503
    Abstract: Provided herein are titanium alloys that can achieve a combination of high strength and high toughness or elongation, and a method to produce the alloys. By tolerating iron, oxygen, and other incidental elements and impurities, the alloys enable the use of lower quality scrap as raw materials. The alloys are castable and can form ?-phase laths in a basketweave morphology by a commercially feasible heat treatment that does not require hot-working or rapid cooling rates. The alloys comprise, by weight, about 3.0% to about 6.0% aluminum, 0% to about 1.5% tin, about 2.0% to about 4.0% vanadium, about 0.5% to about 4.5% molybdenum, about 1.0% to about 2.5% chromium, about 0.20% to about 0.55% iron, 0% to about 0.35% oxygen, 0% to about 0.007% boron, and 0% to about 0.60% other incidental elements and impurities, the balance of weight percent comprising titanium.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: November 12, 2019
    Assignee: Questek Innovations LLC
    Inventors: James A. Wright, Jason Sebastian, Herng-Jen Jou
  • Patent number: 8801872
    Abstract: A case hardened gear steel having enhanced core fracture toughness includes by weight percent about 16.3Co, 7.5Ni, 3.5Cr, 1.75Mo, 0.2W, 0.11C, 0.03Ti, and 0.02V and the balance Fe, characterized as a predominantly lath martensitic microstructure essentially free of topologically close-packed (TCP) phases and carburized to include fine M2C carbides to provide a case hardness of at least about 62 HRC and a core toughness of at least about 50 ksi?in.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 12, 2014
    Assignee: QuesTek Innovations, LLC
    Inventors: James A. Wright, Jason Sebastian
  • Patent number: 8518192
    Abstract: A lead-free copper alloy includes, in combination by weight, about 10.0% to about 20.0% bismuth, about 0.05% to about 0.3% phosphorous, about 2.2% to about 10.0% tin, up to about 5.0% antimony, and up to about 0.02% boron, the balance essentially copper and incidental elements and impurities. The alloy contains no more than about 0.05 wt. % or 0.10 wt. % lead.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: August 27, 2013
    Assignee: QuesTek Innovations, LLC
    Inventors: Abhijeet Misra, Jason Sebastian, James A. Wright
  • Publication number: 20110303387
    Abstract: A lead-free copper alloy includes, in combination by weight, about 10.0% to about 20.0% bismuth, about 0.05% to about 0.3% phosphorous, about 2.2% to about 10.0% tin, up to about 5.0% antimony, and up to about 0.02% boron, the balance essentially copper and incidental elements and impurities. The alloy contains no more than about 0.05 wt. % or 0.10 wt. % lead.
    Type: Application
    Filed: March 2, 2010
    Publication date: December 15, 2011
    Applicant: QUESTEK INNOVATIONS LLC.
    Inventors: Abhijeet Misra, Jason Sebastian, James A. Wright
  • Publication number: 20110268602
    Abstract: Provided herein are titanium alloys that can achieve a combination of high strength and high toughness or elongation, and a method to produce the alloys. By tolerating iron, oxygen, and other incidental elements and impurities, the alloys enable the use of lower quality scrap as raw materials. The alloys are castable and can form ?-phase laths in a basketweave morphology by a commercially feasible heat treatment that does not require hot-working or rapid cooling rates. The alloys comprise, by weight, about 3.0% to about 6.0% aluminum, 0% to about 1.5% tin, about 2.0% to about 4.0% vanadium, about 0.5% to about 4.5% molybdenum, about 1.0% to about 2.5% chromium, about 0.20% to about 0.55% iron, 0% to about 0.35% oxygen, 0% to about 0.007% boron, and 0% to about 0.60% other incidental elements and impurities, the balance of weight percent comprising titanium.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 3, 2011
    Applicant: QuesTek Innovations LLC
    Inventors: James A. Wright, Jason Sebastian, Herng-Jeng Jou
  • Publication number: 20090199930
    Abstract: A case hardened gear steel having enhanced core fracture toughness includes by weight percent about 16.3Co, 7.5Ni, 3.5Cr, 1.75Mo, 0.2W, 0.11C, 0.03Ti, and 0.02V and the balance Fe, characterized as a predominantly lath martensitic microstructure essentially free of topologically close-packed (TCP) phases and carburized to include fine M2C carbides to provide a case hardness of at least about 62 HRC and a core toughness of at least about 50 ksi?in.
    Type: Application
    Filed: August 20, 2008
    Publication date: August 13, 2009
    Applicant: QuesTek Innovations LLC
    Inventors: James A. Wright, Jason Sebastian