Patents by Inventor Jason Si

Jason Si has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230128519
    Abstract: An electrical connector for high speed signals. The connector has multiple conductive elements that may serve as signal or ground conductors. A member formed with lossy material and conductive compliant members may be inserted in the connector. The conductive compliant members may be aligned with conductive elements of the connector configured as ground conductors. For a connector configured to carry differential signals, the ground conductors may separate pairs of signal conductors. The member may further include a conductive web, embedded within the lossy material, that interconnects the conductive compliant members. For a receptacle connector, the conductive elements may have mating contact portions aligned along opposing surfaces of a cavity. The conductive elements may have contact tails for attachment to a printed circuit board and intermediate portions connecting the mating contact portions and the contact tails. The conductive compliant members may press against the intermediate portions.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 27, 2023
    Applicant: Amphenol Corporation
    Inventors: Brian Kirk, Jason Si, Ba Pham, Sam Kocsis, David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu
  • Publication number: 20230006390
    Abstract: A stacked I/O connector for use with a high speed, high density transceiver that generates a large amount of heat. The connector may be formed with a web-like housing into which leadframe assemblies are inserted. The web-like housing may have openings in the front, back, top and/or sides, enabling airflow through the connector with little resistance. Sidewall openings may open into a channel between the housing and a wall of cage, enabling air flowing to cool transceivers inserted into the cage to pass through the connector assembly with low resistance and high cooling efficiency. A cage for the connector may have openings selectively positioned such that air flowing through the cage to cool transceivers mated to the I/O connector may pass through the connector with low resistance, enhancing cooling efficiency. Such a connector may be used with OSFP transceivers to meet signal integrity and thermal requirements at 112GBps and beyond.
    Type: Application
    Filed: September 8, 2022
    Publication date: January 5, 2023
    Applicant: FCI USA LLC
    Inventors: JASON SI, Ba Pham, Xingye Chen, Sam Kocsis
  • Patent number: 11539171
    Abstract: An electrical connector for high speed signals. The connector has multiple conductive elements that may serve as signal or ground conductors. A member formed with lossy material and conductive compliant members may be inserted in the connector. The conductive compliant members may be aligned with conductive elements of the connector configured as ground conductors. For a connector configured to carry differential signals, the ground conductors may separate pairs of signal conductors. The member may further include a conductive web, embedded within the lossy material, that interconnects the conductive compliant members. For a receptacle connector, the conductive elements may have mating contact portions aligned along opposing surfaces of a cavity. The conductive elements may have contact tails for attachment to a printed circuit board and intermediate portions connecting the mating contact portions and the contact tails. The conductive compliant members may press against the intermediate portions.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: December 27, 2022
    Assignee: Amphenol Corporation
    Inventors: Brian Kirk, Jason Si, Ba Pham, Sam Kocsis, David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu
  • Publication number: 20220393404
    Abstract: A spring seal for a cage of a high speed I/O connector, such as those compliant with an OSFP standard. The spring seal suppresses resonances in the operating frequency range of the connector in a space between the cage and a transceiver inserted in a channel of the cage to mate with the I/O connector. The spring seal has multiple peaks, separated by valleys, with short conducting paths between the peaks and valleys. The spring seal may connect a conductive exterior of the transceiver to a wall of the cage, with the peaks contacting a conductive exterior of the transceiver and the valleys contacting walls of the cage. The spring seal may have a plurality of slits that reduce the spring force while providing conducting paths between peaks and valleys.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 8, 2022
    Applicant: Amphenol Corporation
    Inventors: Jason Si, R. Brad Brubaker, Brian Kirk
  • Patent number: 11444404
    Abstract: A stacked I/O connector for use with a high speed, high density transceiver that generates a large amount of heat. The connector may be formed with a web-like housing into which leadframe assemblies are inserted. The web-like housing may have openings in the front, back, top and/or sides, enabling airflow through the connector with little resistance. Sidewall openings may open into a channel between the housing and a wall of cage, enabling air flowing to cool transceivers inserted into the cage to pass through the connector assembly with low resistance and high cooling efficiency. A cage for the connector may have openings selectively positioned such that air flowing through the cage to cool transceivers mated to the I/O connector may pass through the connector with low resistance, enhancing cooling efficiency. Such a connector may be used with OSFP transceivers to meet signal integrity and thermal requirements at 112 GBps and beyond.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: September 13, 2022
    Assignee: FCI USA LLC
    Inventors: Jason Si, Ba Pham, Xingye Chen, Sam Kocsis
  • Patent number: 11271348
    Abstract: A high performance connector that provides heat dissipation sufficient to support operation of high power consuming QSFP-DD transceivers. The connector may be housed in a cage with a first channel to receive a transceiver. A connector port may be aligned with the first channel, and a heat transfer element comprising a compressible portion may make mechanical and thermal contact with a transceiver inside the first channel. The compressible portion may be urged to contact a transceiver by a biasing element. The heat transfer element may be thermally coupled to a heat dissipating element outside the cage. The cage may have multiple channels, and the heat transfer element may be installed in a channel between other channels, each receiving transceivers such that the heat transfer element may receive heat from multiple transceivers.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: March 8, 2022
    Assignee: Amphenol Corporation
    Inventors: Xingye Chen, Jason Si
  • Publication number: 20210159643
    Abstract: An electrical connector for high speed signals. The connector has multiple conductive elements that may serve as signal or ground conductors. A member formed with lossy material and conductive compliant members may be inserted in the connector. The conductive compliant members may be aligned with conductive elements of the connector configured as ground conductors. For a connector configured to carry differential signals, the ground conductors may separate pairs of signal conductors. The member may further include a conductive web, embedded within the lossy material, that interconnects the conductive compliant members. For a receptacle connector, the conductive elements may have mating contact portions aligned along opposing surfaces of a cavity. The conductive elements may have contact tails for attachment to a printed circuit board and intermediate portions connecting the mating contact portions and the contact tails. The conductive compliant members may press against the intermediate portions.
    Type: Application
    Filed: February 1, 2021
    Publication date: May 27, 2021
    Applicant: Amphenol Corporation
    Inventors: Brian Kirk, Jason Si, Ba Pham, Sam Kocsis, David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu
  • Publication number: 20210098927
    Abstract: A stacked I/O connector for use with a high speed, high density transceiver that generates a large amount of heat. The connector may be formed with a web-like housing into which leadframe assemblies are inserted. The web-like housing may have openings in the front, back, top and/or sides, enabling airflow through the connector with little resistance. Sidewall openings may open into a channel between the housing and a wall of cage, enabling air flowing to cool transceivers inserted into the cage to pass through the connector assembly with low resistance and high cooling efficiency. A cage for the connector may have openings selectively positioned such that air flowing through the cage to cool transceivers mated to the I/O connector may pass through the connector with low resistance, enhancing cooling efficiency. Such a connector may be used with OSFP transceivers to meet signal integrity and thermal requirements at 112 GBps and beyond.
    Type: Application
    Filed: September 24, 2020
    Publication date: April 1, 2021
    Applicant: FCI USA LLC
    Inventors: Jason Si, Ba Pham, Xingye Chen, Sam Kocsis
  • Patent number: 10916894
    Abstract: An electrical connector for high speed signals. The connector has multiple conductive elements that may serve as signal or ground conductors. A member formed with lossy material and conductive compliant members may be inserted in the connector. The conductive compliant members may be aligned with conductive elements of the connector configured as ground conductors. For a connector configured to carry differential signals, the ground conductors may separate pairs of signal conductors. The member may further include a conductive web, embedded within the lossy material, that interconnects the conductive compliant members. For a receptacle connector, the conductive elements may have mating contact portions aligned along opposing surfaces of a cavity. The conductive elements may have contact tails for attachment to a printed circuit board and intermediate portions connecting the mating contact portions and the contact tails. The conductive compliant members may press against the intermediate portions.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: February 9, 2021
    Assignee: Amphenol Corporation
    Inventors: Brian Kirk, Jason Si, Ba Pham, Sam Kocsis, David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu
  • Patent number: 10847930
    Abstract: An interconnection system including a pluggable transceiver and a connector disposed in a cavity of a conductive cage. The pluggable transceiver may include a latching mechanism for locking to the conductive cage. The latching mechanism may include a pair of latches positioned on opposite sides of the pluggable transceiver. The latches may be spatially offset from each other along a longitudinal and/or vertical direction. Corresponding latching tabs in the conductive cage may be disposed in the same relationship, even in a ganged configuration when latching tabs for adjacent cavities are formed in a common wall between cavities. Cammed surfaces of a release mechanism, centered between latching edges of the transceiver latches may impart a latch releasing force at a central portion of the latching tab forcing the lathing tab back into the common wall, reducing rotational moment applied in prior designs, such as QSFP ganged cages.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: November 24, 2020
    Assignee: Amphenol Corporation
    Inventors: Mark M. Ayzenberg, Jason Si
  • Publication number: 20200235529
    Abstract: An electrical connector for high speed signals. The connector has multiple conductive elements that may serve as signal or ground conductors. A member formed with lossy material and conductive compliant members may be inserted in the connector. The conductive compliant members may be aligned with conductive elements of the connector configured as ground conductors. For a connector configured to carry differential signals, the ground conductors may separate pairs of signal conductors. The member may further include a conductive web, embedded within the lossy material, that interconnects the conductive compliant members. For a receptacle connector, the conductive elements may have mating contact portions aligned along opposing surfaces of a cavity. The conductive elements may have contact tails for attachment to a printed circuit board and intermediate portions connecting the mating contact portions and the contact tails. The conductive compliant members may press against the intermediate portions.
    Type: Application
    Filed: December 16, 2019
    Publication date: July 23, 2020
    Applicant: Amphenol Corporation
    Inventors: Brian Kirk, Jason Si, Ba Pham, Sam Kocsis, David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu
  • Patent number: 10511128
    Abstract: An electrical connector for high speed signals. The connector has multiple conductive elements that may serve as signal or ground conductors. A member formed with lossy material and conductive compliant members may be inserted in the connector. The conductive compliant members may be aligned with conductive elements of the connector configured as ground conductors. For a connector configured to carry differential signals, the ground conductors may separate pairs of signal conductors. The member may further include a conductive web, embedded within the lossy material, that interconnects the conductive compliant members. For a receptacle connector, the conductive elements may have mating contact portions aligned along opposing surfaces of a cavity. The conductive elements may have contact tails for attachment to a printed circuit board and intermediate portions connecting the mating contact portions and the contact tails. The conductive compliant members may press against the intermediate portions.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 17, 2019
    Assignee: Amphenol Corporation
    Inventors: Brian Kirk, Jason Si, Ba Pham, Sam Kocsis, David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu
  • Publication number: 20190319402
    Abstract: An interconnection system including a pluggable transceiver and a connector disposed in a cavity of a conductive cage. The pluggable transceiver may include a latching mechanism for locking to the conductive cage. The latching mechanism may include a pair of latches positioned on opposite sides of the pluggable transceiver. The latches may be spatially offset from each other along a longitudinal and/or vertical direction. Corresponding latching tabs in the conductive cage may be disposed in the same relationship, even in a ganged configuration when latching tabs for adjacent cavities are formed in a common wall between cavities. Cammed surfaces of a release mechanism, centered between latching edges of the transceiver latches may impart a latch releasing force at a central portion of the latching tab forcing the lathing tab back into the common wall, reducing rotational moment applied in prior designs, such as QSFP ganged cages.
    Type: Application
    Filed: June 26, 2019
    Publication date: October 17, 2019
    Applicant: Amphenol Corporation
    Inventors: Mark A. Ayzenberg, Jason Si
  • Patent number: 10374355
    Abstract: An interconnection system including a pluggable transceiver and a connector disposed in a cavity of a conductive cage. The pluggable transceiver may include a latching mechanism for locking to the conductive cage. The latching mechanism may include a pair of latches positioned on opposite sides of the pluggable transceiver. The latches may be spatially offset from each other along a longitudinal and/or vertical direction. Corresponding latching tabs in the conductive cage may be disposed in the same relationship, even in a ganged configuration when latching tabs for adjacent cavities are formed in a common wall between cavities. Cammed surfaces of a release mechanism, centered between latching edges of the transceiver latches may impart a latch releasing force at a central portion of the latching tab forcing the lathing tab back into the common wall, reducing rotational moment applied in prior designs, such as QSFP ganged cages.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: August 6, 2019
    Assignee: Amphenol Corporation
    Inventors: Mark M. Ayzenberg, Jason Si
  • Publication number: 20190221973
    Abstract: An electrical connector for high speed signals. The connector has multiple conductive elements that may serve as signal or ground conductors. A member formed with lossy material and conductive compliant members may be inserted in the connector. The conductive compliant members may be aligned with conductive elements of the connector configured as ground conductors. For a connector configured to carry differential signals, the ground conductors may separate pairs of signal conductors. The member may further include a conductive web, embedded within the lossy material, that interconnects the conductive compliant members. For a receptacle connector, the conductive elements may have mating contact portions aligned along opposing surfaces of a cavity. The conductive elements may have contact tails for attachment to a printed circuit board and intermediate portions connecting the mating contact portions and the contact tails. The conductive compliant members may press against the intermediate portions.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Applicant: Amphenol Corporation
    Inventors: Brian Kirk, Jason Si, Ba Pham, Sam Kocsis, David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu
  • Patent number: D843947
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: March 26, 2019
    Assignee: Amphenol Corporation
    Inventors: David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu, Jason Si, Sam Kocsis, Ba Pham, Brian Kirk
  • Patent number: D850384
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: June 4, 2019
    Assignee: Amphenol Corporation
    Inventors: Brian Kirk, Jason Si, Ba Pham, Sam Kocsis
  • Patent number: D899376
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: October 20, 2020
    Assignee: Amphenol Corporation
    Inventors: David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu, Jason Si, Sam Kocsis, Ba Pham, Brian Kirk
  • Patent number: D902158
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: November 17, 2020
    Assignee: Amphenol Corporation
    Inventors: David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu, Jason Si, Sam Kocsis, Ba Pham, Brian Kirk
  • Patent number: D980168
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: March 7, 2023
    Assignee: Amphenol Corporation
    Inventors: David Chan, Wonder Wang, Bob Tang, Martin Li, Smith Wu, Jason Si, Sam Kocsis, Ba Pham, Brian Kirk