Patents by Inventor Jason Siu-Wei Li

Jason Siu-Wei Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230001083
    Abstract: Delivery systems and their methods of use for delivering one or more therapeutic compounds to a user are described. A delivery system may include an implantable pump and an external actuator. The implantable pump may include an actuatable portion that may be actuated to dispense a volume of fluid. The external actuator may include a pusher configured to deform skin to engage an actuatable portion of the pump. The external actuator may also include a positioning magnet configured to magnetically attract a portion of the implantable pump such that the external actuator and the pump may be aligned prior to applying force to the portion of the skin between the external actuator and the actuatable portion of the pump.
    Type: Application
    Filed: December 4, 2020
    Publication date: January 5, 2023
    Applicants: Massachusetts Institute of Technology, The Brigham and Women's Hospital, Inc.
    Inventors: Carlo Giovanni Traverso, Jason Siu-Wei Li, Rebecca McManus, Seungho Lee, Adam Wentworth, Qianqian Wan
  • Patent number: 11318293
    Abstract: A platform technology has been designed to provide a means for controlled delivery of single or multiple doses of therapeutic, prophylactic, diagnostic or identifying agents to livestock. The delivery system is based on a livestock ear tag that releases therapeutic and/or prophylactic agent when applied to the ear or other desired anatomical target of the animal. The agent to be delivered is encapsulated in or on microneedles and or microparticles and or nanoparticles or combination thereof on a surface thereon of the male or female part of the tag, which is pressed into the skin so that the microneedles penetrate into the epidermis and dermis layers of the skin. The agent is then released into the animal from the microneedles and or microparticles and or nanoparticles or combination thereof at the site of contact into the epidermis and dermis layers of the skin.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 3, 2022
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Michael S. Williams, Jason Siu Wei Li, Jacob Coffey, Christoph Winfried Johannes Steiger, Miguel Jimenez, Robert S. Langer, Ester Caffarel Salvador, Alex Abramson, Carlo Giovanni Traverso
  • Publication number: 20200164193
    Abstract: A platform technology has been designed to provide a means for controlled delivery of single or multiple doses of therapeutic, prophylactic, diagnostic or identifying agents to livestock. The delivery system is based on a livestock ear tag that releases therapeutic and/or prophylactic agent when applied to the ear or other desired anatomical target of the animal. The agent to be delivered is encapsulated in or on microneedles and or microparticles and or nanoparticles or combination thereof on a surface thereon of the male or female part of the tag, which is pressed into the skin so that the microneedles penetrate into the epidermis and dermis layers of the skin. The agent is then released into the animal from the microneedles and or microparticles and or nanoparticles or combination thereof at the site of contact into the epidermis and dermis layers of the skin.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 28, 2020
    Inventors: Michael S. Williams, Jason Siu Wei Li, Jacob Coffey, Christoph Winfried Johannes Steiger, Miguel Jimenez, Robert S. Langer, Ester Caffarel Salvador, Alex Abramson
  • Publication number: 20180133162
    Abstract: A polymeric composite coating includes a drug release retardant polymer matrix, and pH-responsive nanoparticulate pore former. The pH-responsive pore formers function to modulate the permeability of the coating in response to pH changes which can compensate any changes in drug solubility with negligible leaching of the pore formers. The pH-responsive nanoparticulate pore formers may also function as alcohol-resistant component to the overall composite coating to resist increased solubility and permeability in presence of alcohol at 40% ethanol concentration in aqueous media. In one embodiment, the drug release retardant polymer is made of cellulose derivatives.
    Type: Application
    Filed: November 13, 2017
    Publication date: May 17, 2018
    Inventors: XIAO YU WU, KUAN HUAN CHEN, HAO HAN CHANG, ALIREZA SHALVIRI, JASON SIU-WEI LI
  • Patent number: 9387279
    Abstract: A biocompatible insulin delivery device is provided comprising an insulin reservoir sealed with a glucose-responsive plug or membrane. The plug functions to release insulin from the reservoir in response to a hyperglycemic glucose concentration and to prevent insulin release from the reservoir in response to hypoglycemic glucose concentration. In one embodiment, the plug is made of a biocompatible polymeric matrix comprising an inorganic component, a stimulus-responsive component and a catalytic component.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: July 12, 2016
    Assignee: The Governing Council of the University of Toronto
    Inventors: Xiao Yu Wu, Kai Zhang, Huiyu Huang, Claudia Gordijo, Jason Siu-Wei Li, Michael K.L. Chu
  • Publication number: 20140213963
    Abstract: A biocompatible insulin delivery device is provided comprising an insulin reservoir sealed with a glucose-responsive plug or membrane. The plug functions to release insulin from the reservoir in response to a hyperglycemic glucose concentration and to prevent insulin release from the reservoir in response to hypoglycemic glucose concentration. In one embodiment, the plug is made of a biocompatible polymeric matrix comprising an inorganic component, a stimulus-responsive component and a catalytic component.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: The Governing Council of the University of Toronto
    Inventors: Xiao Yu Wu, Kai Zhang, Huiyu Huang, Claudia Gordijo, Jason Siu-Wei Li, Michael K.L. Chu