Patents by Inventor Jason Spitzer

Jason Spitzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7732918
    Abstract: An enhanced heat transposer comprised is of a vapor chamber. The surface of the vapor chamber that holds the fluid comprises an array of carbon nanotubes (CNTs) that are grown in a way that enables the fluid to come into maximum contact with the CNTs. The fluid evaporates in the sealed vapor chamber when it is in touch with a hot surface. The vapor comes in contact with a hollow pin-fin structure that provides additional surface area for vapor cooling and heat transfer. The condensed vapor then drops back into the fluid container, and the cycle continues.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: June 8, 2010
    Assignee: Nanoconduction, Inc.
    Inventors: Carlos Dangelo, Jason Spitzer
  • Publication number: 20080128116
    Abstract: An enhanced heat transposer comprised is of a vapor chamber. The surface of the vapor chamber that holds the fluid comprises an array of carbon nanotubes (CNTs) that are grown in a way that enables the fluid to come into maximum contact with the CNTs. The fluid evaporates in the sealed vapor chamber when it is in touch with a hot surface. The vapor comes in contact with a hollow pin-fin structure that provides additional surface area for vapor cooling and heat transfer. The condensed vapor then drops back into the fluid container, and the cycle continues.
    Type: Application
    Filed: May 15, 2007
    Publication date: June 5, 2008
    Inventors: Carlos Dangelo, Jason Spitzer
  • Publication number: 20050265916
    Abstract: Methods and apparatus for preconditioning a lithium niobate or lithium tantalate crystal. At least a portion of a surface of the crystal is covered with a condensed material including one or more active chemicals. The crystal is heated in a non-oxidizing environment above an activating temperature at which the active chemicals contribute to reducing the crystal beneath the covered surface portion. The crystal is cooled from above the activating temperature to below a quenching temperature at which the active chemicals become essentially inactive for reducing the crystal.
    Type: Application
    Filed: May 25, 2004
    Publication date: December 1, 2005
    Inventors: Dieter Jundt, Maria Claudia Kajiyama, Jason Spitzer