Patents by Inventor Jason T McCullough

Jason T McCullough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604819
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C 0.79-1.00%; Mn 0.40-1.00; Si 0.30-1.00; Cr 0.20-1.00; V 0.05-0.35; Ti 0.01-0.035; N 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: March 31, 2020
    Assignee: ARCELORMITTAL INVESTIGACION Y DESARROLLO, S.L.
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T McCullough, Michael A. Muscarella, John S. Nelson
  • Publication number: 20190338386
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C 0.79-1.00%; Mn 0.40-1.00; Si 0.30-1.00; Cr 0.20-1.00; V 0.05-0.35; Ti 0.01-0.035; N 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Application
    Filed: October 25, 2016
    Publication date: November 7, 2019
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T. McCullough, Michael A. Muscarella, John S. Nelson
  • Publication number: 20180112284
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C 0.79-1.00%; Mn 0.40-1.00; Si 0.30-1.00; Cr 0.20-1.00; V 0.05-0.35; Ti 0.01-0.035; N 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Application
    Filed: October 25, 2016
    Publication date: April 26, 2018
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T. McCullough, Michael A. Muscarella, John S. Nelson
  • Patent number: 9476107
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C 0.79-1.00%; Mn 0.40-1.00; Si 0.30-1.00; Cr 0.20-1.00; V 0.05-0.35; Ti 0.01-0.035; N 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: October 25, 2016
    Assignee: Arcelormittal
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T McCullough, Michael A. Muscarella, John S. Nelson
  • Publication number: 20140130943
    Abstract: A method of making a high strength head-hardened crane rail and the crane rail produced by the method. The method comprises the steps of providing a steel rail having a composition comprising, in weight percent: C, 0.79-1.00%; Mn, 0.40-1.00; Si, 0.30-1.00; Cr, 0.20-1.00; V, 0.05-0.35; Ti, 0.01-0.035; N, 0.002 to 0.0150; and the remainder being predominantly iron. The steel rail is cooled from a temperature between about 700 and 800° C. at a cooling rate having an upper cooling rate boundary plot defined by an upper line connecting xy-coordinates (0 s, 800° C.), (40 s, 700° C.), and (140 s, 600° C.) and a lower cooling rate boundary plot defined by a lower line connecting xy-coordinates (0 s, 700° C.), (40 s, 600° C.), and (140 s, 500° C.).
    Type: Application
    Filed: November 15, 2013
    Publication date: May 15, 2014
    Inventors: Bruce L. Bramfitt, Frederick B. Fletcher, Jason T McCullough, Michael A. Muscarella, John S. Nelson