Patents by Inventor Jason T. Rolfe

Jason T. Rolfe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230222337
    Abstract: Collaborative filtering systems based on variational autoencoders (VAEs) are provided. VAEs may be trained on row-wise data without necessarily training a paired VAE on column-wise data (or vice-versa), and may optionally be trained via minibatches. The row-wise VAE models the output of the corresponding column-based VAE as a set of parameters and uses these parameters in decoding. In some implementations, a paired VAE is provided which receives column-wise data and models row-wise parameters; each of the paired VAEs may bind their learned column- or row-wise parameters to the output of the corresponding VAE. The paired VAEs may optionally be trained via minibatches. Unobserved data may be explicitly modelled. Methods for performing inference with such VAE-based collaborative filtering systems are also disclosed, as are example applications to search and anomaly detection.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 13, 2023
    Inventors: William G. Macready, Jason T. Rolfe
  • Patent number: 11586915
    Abstract: Collaborative filtering systems based on variational autoencoders (VAEs) are provided. VAEs may be trained on row-wise data without necessarily training a paired VAE on column-wise data (or vice-versa), and may optionally be trained via minibatches. The row-wise VAE models the output of the corresponding column-based VAE as a set of parameters and uses these parameters in decoding. In some implementations, a paired VAE is provided which receives column-wise data and models row-wise parameters; each of the paired VAEs may bind their learned column- or row-wise parameters to the output of the corresponding VAE. The paired VAEs may optionally be trained via minibatches. Unobserved data may be explicitly modelled. Methods for performing inference with such VAE-based collaborative filtering systems are also disclosed, as are example applications to search and anomaly detection.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: February 21, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Jason T. Rolfe
  • Patent number: 11481669
    Abstract: A digital processor runs a machine learning algorithm in parallel with a sampling server. The sampling sever may continuously or intermittently draw samples for the machine learning algorithm during execution of the machine learning algorithm, for example on a given problem. The sampling server may run in parallel (e.g., concurrently, overlapping, simultaneously) with a quantum processor to draw samples from the quantum processor.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: October 25, 2022
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Jason T. Rolfe, William G. Macready, Mani Ranjbar, Mayssam Mohammad Nevisi
  • Publication number: 20210289020
    Abstract: A digital processor runs a machine learning algorithm in parallel with a sampling server. The sampling sever may continuously or intermittently draw samples for the machine learning algorithm during execution of the machine learning algorithm, for example on a given problem. The sampling server may run in parallel (e.g., concurrently, overlapping, simultaneously) with a quantum processor to draw samples from the quantum processor.
    Type: Application
    Filed: September 26, 2017
    Publication date: September 16, 2021
    Inventors: Jason T. Rolfe, William G. Macready, Mani Ranjbar, Mayssam Mohammad Nevisi
  • Publication number: 20210089884
    Abstract: Collaborative filtering systems based on variational autoencoders (VAEs) are provided. VAEs may be trained on row-wise data without necessarily training a paired VAE on column-wise data (or vice-versa), and may optionally be trained via minibatches. The row-wise VAE models the output of the corresponding column-based VAE as a set of parameters and uses these parameters in decoding. In some implementations, a paired VAE is provided which receives column-wise data and models row-wise parameters; each of the paired VAEs may bind their learned column- or row-wise parameters to the output of the corresponding VAE. The paired VAEs may optionally be trained via minibatches. Unobserved data may be explicitly modelled. Methods for performing inference with such VAE-based collaborative filtering systems are also disclosed, as are example applications to search and anomaly detection.
    Type: Application
    Filed: December 12, 2018
    Publication date: March 25, 2021
    Inventors: William G. Macready, Jason T. Rolfe
  • Publication number: 20210019647
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 21, 2021
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe
  • Publication number: 20200401916
    Abstract: Generative and inference machine learning models with discrete-variable latent spaces are provided. Discrete variables may be transformed by a smoothing transformation with overlapping conditional distributions or made natively reparametrizable by definition over a GUMBEL distribution. Models may be trained by sampling from different models in the positive and negative phase and/or sample with different frequency in the positive and negative phase. Machine learning models may be defined over high-dimensional quantum statistical systems near a phase transition to take advantage of long-range correlations. Machine learning models may be defined over graph-representable input spaces and use multiple spanning trees to form latent representations. Machine learning models may be relaxed via continuous proxies to support a greater range of training techniques, such as importance weighting. Example architectures for (discrete) variational autoencoders using such techniques are also provided.
    Type: Application
    Filed: February 7, 2019
    Publication date: December 24, 2020
    Inventors: Jason T. Rolfe, Amir H. Khoshaman, Arash Vahdat, Mohammad H. Amin, Evgeny A. Andriyash, William G. Macready
  • Patent number: 10817796
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: October 27, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe
  • Publication number: 20200090050
    Abstract: Generative machine learning models, such as variational autoencoders, with comparatively sparse latent spaces are provided. Continuous latent variables are activated and/or inactivated based on a state of the latent space. Activation may be controlled by corresponding binary latent variables and/or by rectification of probability distributions defined over the latent space. Sparsification may be supported by normalization of terms, such as providing an L1 or L2 prior.
    Type: Application
    Filed: September 5, 2019
    Publication date: March 19, 2020
    Inventors: Jason T. Rolfe, Seyed Ali Saberali, William G. Macready
  • Publication number: 20170255871
    Abstract: A hybrid computer comprising a quantum processor can be operated to perform a scalable comparison of high-entropy samplers. Performing a scalable comparison of high-entropy samplers can include comparing entropy and KL divergence of post-processed samplers. A hybrid computer comprising a quantum processor generates samples for machine learning. The quantum processor is trained by matching data statistics to statistics of the quantum processor. The quantum processor is tuned to match moments of the data.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 7, 2017
    Inventors: William G. Macready, Firas Hamze, Fabian A. Chudak, Mani Ranjbar, Jack R. Raymond, Jason T. Rolfe