Patents by Inventor Jason Thomas Harris

Jason Thomas Harris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10590032
    Abstract: A substrate having inner and outer major surfaces, a plurality of edge surfaces, and a plurality of corner surfaces; and at least one of: (i) a coating applied over a limited area of the outer major surface of the substrate to produce a composite structure, (ii) an intermediate layer applied to the inner major surface of the substrate, and (iii) an elongate discontinuity disposed at one or more corners of the substrate, each of which operates to reduce catastrophic failures in the substrate resulting from a dynamic sharp impact to the outer major surface of the substrate.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: March 17, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Petr Gorelchenko, Jason Thomas Harris, Guangli Hu, Khaled Layouni, Po-Jen Shih, Bin Zhang
  • Publication number: 20190375679
    Abstract: Glass-based articles comprise stress profiles providing improved fracture resistance. The glass-based articles herein provide high fracture resistance after multiple drops.
    Type: Application
    Filed: June 7, 2019
    Publication date: December 12, 2019
    Inventors: Timothy Michael Gross, Xiaoju Guo, Jason Thomas Harris, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andr Mitchell, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Ljerka Ukrainczyk
  • Publication number: 20190367408
    Abstract: Coated glass-based articles and methods of manufacture disclosed. An article comprises a chemically strengthened glass-based core substrate having a first surface and a second surface, a chemically strengthened glass-based first cladding substrate having a third surface directly bonded to the first surface to provide a first core-cladding interface and a chemically strengthened glass-based second cladding substrate having a fourth surface directly bonded to the second surface to provide a second core-cladding interface, wherein the core substrate is bonded to the first cladding substrate and the second cladding substrate, and there is a coating on the first cladding substrate.
    Type: Application
    Filed: January 16, 2018
    Publication date: December 5, 2019
    Inventors: Jason Thomas Harris, Vijay Subramanian
  • Publication number: 20190352226
    Abstract: A glass-based substrate having a Young's modulus, a first surface, and a second surface. A coating, on at least one of the first and second surfaces, having a Young's modulus equal to or greater than the substrate Young's modulus. A compressive region having a compressive stress CS of from 750 MPa to 1200 MPa at a surface and extending to a depth of compression (DOC). The compressive region having a first portion and a second portion, the first portion extending from the first surface up to a first depth, the second portion extending from the first depth to the DOC, points in the first portion comprise a tangent having a slope that is less than ?15 MPa/micrometers and greater than ?60 MPa/micrometers, and points in the second portion comprise a tangent having a slope that is less than or equal to ?1 MPa/micrometers and greater than ?12 MPa/micrometers.
    Type: Application
    Filed: January 31, 2018
    Publication date: November 21, 2019
    Inventors: Jason Thomas Harris, Guangli Hu
  • Publication number: 20190352225
    Abstract: Laminated glass-based articles and methods of manufacture are disclosed. A glass-based article includes a glass-based substrate having a first surface and a second surface opposing the first surface defining a substrate thickness (t) in a range of about 0.1 millimeters to 3 millimeters, the glass-based substrate having a compressive region having a first compressive stress CS maximum at the first surface of the glass-based article extending to a depth of compression (DOC) and second local CS maximum at a depth of at least 25 ?m from the first surface, wherein the glass-based substrate comprises a glass-based core substrate having a first side and a second side, the glass-based core substrate sandwiched between a glass-based first cladding substrate and a glass-based second cladding substrate, the first cladding substrate and second cladding substrate directly bonded to the first side and the second cladding substrate directly bonded to the second side.
    Type: Application
    Filed: January 16, 2018
    Publication date: November 21, 2019
    Inventors: Jason Thomas Harris, Vijay Subramanian, Chunfeng Zhou
  • Publication number: 20190225538
    Abstract: Strengthened glass-based substrates having a first outer region compressive stress and a first side having first coating thereon are disclosed. The first coating comprising a material selected to have a first coating Young's modulus value, a first coating thickness, and a first coating stress that is either neutral or compressive, such that the absolute value of first outer region compressive stress is greater than the absolute value of the first coating stress. Methods of making glass-based articles are provided, and glass-based articles having coatings that provide different strength values and/or reliability on different sides of the glass-based articles are also disclosed.
    Type: Application
    Filed: September 25, 2017
    Publication date: July 25, 2019
    Inventors: Jason Thomas Harris, Vijay Subramanian, Wei Xu
  • Publication number: 20190161402
    Abstract: Glass-based articles having defined stress profiles and methods for manufacturing such glass-based articles are provided. A non-limiting glass-based article comprises an outer region extending from the surface to a depth of compression, wherein the outer region is under a neutral stress or a first compressive stress, a core region under a second compressive stress, the second compressive stress defining a compression peak having a maximum compression value and a maximum width at zero stress in a range of from about 1 micrometer to about 200 micrometers, and an intermediate region disposed between the surface and the core region, wherein the intermediate region is under a tensile stress.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 30, 2019
    Inventors: Jason Thomas Harris, Kevin Barry Reiman, Rostislav Vatchev Roussev, Ross Johnson Stewart
  • Publication number: 20190162097
    Abstract: Exhaust gas treatment articles and methods of manufacturing the same are disclosed herein. An exhaust gas treatment article includes a porous ceramic honeycomb body with multiple channel walls defining cell channels that extend in an axial direction and an outer peripheral surface that extends in the axial direction. The exhaust gas treatment article further includes a metal layer that surrounds the porous ceramic honeycomb body and that is in direct contact with at least a portion of the outer peripheral surface of the porous ceramic honeycomb body. The metal layer includes a joint. The exhaust gas treatment article includes a shim that is located under the joint and that is in direct contact with at least a portion of the outer peripheral surface of the porous ceramic honeycomb body.
    Type: Application
    Filed: July 13, 2017
    Publication date: May 30, 2019
    Inventors: Rajesh Bhargava, Dana Craig Bookbinder, Curtis Richard Cowles, Jacob George, Jason Thomas Harris, Seth Thomas Nickerson, Pushkar Tandon
  • Publication number: 20180326704
    Abstract: A laminated glass article includes a glass core layer having a core modulus Ecore and a glass cladding layer adjacent to the core layer and having a cladding modulus Eclad. Eclad can be at least 5 GPa less than Ecore. A modulus ratio Ecore/Eclad can be at least 1.08. The cladding layer can have a compressive stress resulting from a coefficient of thermal expansion (CTE) contrast between the core layer and the cladding layer and/or subjecting the laminated glass article to an ion exchange treatment to form an ion exchanged region at an outer surface of the cladding layer.
    Type: Application
    Filed: November 4, 2016
    Publication date: November 15, 2018
    Inventors: Jason Thomas Harris, Guangli Hu, Po-Jen Shih, Bin Zhang, Chunfeng Zhou
  • Publication number: 20180304588
    Abstract: A glass laminate includes a glass core layer having a core coefficient of thermal expansion (CTE) and a glass cladding layer adjacent to the core layer and having a cladding CTE that is less than the core CTE such that the core layer is in tension and the cladding layer is in compression. A stress profile of the glass laminate includes a compressive peak disposed between an outer surface of the cladding layer and an inner surface of the cladding layer.
    Type: Application
    Filed: October 12, 2016
    Publication date: October 25, 2018
    Inventors: Jason Thomas Harris, Guangli Hu, John Christopher Mauro
  • Publication number: 20170297308
    Abstract: A laminated glass article includes a core layer and a clad layer directly adjacent to the core layer. The core layer is formed from a core glass composition. The clad layer is formed from a clad glass composition. An average clad coefficient of thermal expansion (CTE) is less than an average core CTE such that the clad layer is in compression and the core layer is in tension. A compressive stress of the clad layer decreases with increasing distance from an outer surface of the clad layer within an outer portion of the clad layer and remains substantially constant with increasing distance from the outer surface of the clad layer within an intermediate portion of the clad layer disposed between the outer portion and the core layer.
    Type: Application
    Filed: October 7, 2015
    Publication date: October 19, 2017
    Applicant: Corning Incorporated
    Inventors: Vladislav Yuryevich Golyatin, Jason Thomas Harris, Guangli Hu, Gautam Meda, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20170260079
    Abstract: Glass articles comprising an outer region extending from an outer surface of the glass article to a depth of layer and methods of making the same are described. The outer region is bounded by at least one edge of the glass article and is under an intrinsic neutral stress or an intrinsic compressive stress. A core region of the glass article is under a tensile stress. A compressive element applies an external compressive stress to the at least one edge and increases the intrinsic stress on the outer region and reduces the tensile stress in the core region of the glass article. The glass article may be a strengthened glass article such that the outer region is under compressive stress, and the external compressive stress applied by the compressive element has a magnitude such that the glass article has an overall internal stress defined by: ?0t?dt?0 where t is a thickness of the glass article and ? is the internal stress.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 14, 2017
    Inventors: Jason Thomas Harris, Guangli Hu, Yousef Kayed Qaroush, Irene Marjorie Slater, Vijay Subramanian, Sam Samer Zoubi
  • Publication number: 20170197170
    Abstract: In one embodiment, a honeycomb structure formed from ceramic material, or ceramic honeycomb structure, includes at least one outer wall defining a perimeter of the honeycomb structure. A plurality of primary zone partitions and secondary zone partitions may extend in an axial direction of the honeycomb structure and across a width of the honeycomb structure. The primary zone partitions and the secondary zone partitions intersect with one another to divide a radial cross section of the honeycomb structure into a plurality of zones. The primary zone partitions and the secondary zone partitions may have a single-wall thickness with a maximum thickness Tzmax. Each zone may comprise a plurality of channel walls intersecting to subdivide the zone into a plurality of through channels extending in the axial direction of the honeycomb structure, the plurality of channel walls within each zone having a thickness of at least tc and TZmax>2tC.
    Type: Application
    Filed: July 21, 2015
    Publication date: July 13, 2017
    Applicant: CORNING INCORPORATION
    Inventors: Douglas Munroe Beall, Jason Thomas Harris, Seth Thomas Nickerson, Krishna Hemanth Vepakomma