Patents by Inventor Jason Tokayer

Jason Tokayer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11375913
    Abstract: Described herein is an optical coherence tomograph (OCT) angiography technique based on the comparison of OCT signal amplitude to provide flow information. The full OCT spectrum can be split into several narrower spectral bands, resulting in the OCT resolution cell in each band being isotropic and less susceptible to axial motion nose. Inter-B-scan flow values can be determined using the individual spectral bands separately and then averaged. Recombining the flow images from the spectral bands yields angiograms that use the full information in the entire OCT spectral range. Such images provide significant improvement of signal-to-noise ratio (SNR) for both flow detection and connectivity of microvascular networks compared to other techniques. Further, creation of isotropic resolution cells can be useful for quantifying flow having equal sensitivity to axial and transverse flow.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: July 5, 2022
    Assignee: OREGON HEALTH & SCIENCE UNIVERSITY
    Inventors: Yali Jia, David Huang, Jason Tokayer, Ou Tan
  • Patent number: 10485423
    Abstract: Impaired intraocular blood flow within vascular beds in the human eye is associated with certain ocular diseases including, for example, glaucoma, diabetic retinopathy and age-related macular degeneration. A reliable method to quantify blood flow in the various intraocular vascular beds could provide insight into the vascular component of ocular disease pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) was developed for imaging microcirculation within different intraocular regions. A method to quantify SSADA results was developed and used to detect perfusion changes in early stage ocular disease. Associated embodiments relating to methods for quantitatively measuring blood flow at various intraocular vasculature sites, systems for practicing such methods, and use of such methods and systems for diagnosing certain ocular diseases are herein described.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: November 26, 2019
    Assignee: Oregon Health & Science University
    Inventors: David Huang, Yali Jia, Jason Tokayer, Ou Tan
  • Publication number: 20180242862
    Abstract: Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction, resulting in unacceptable signal to noise ratio (SNR). To overcome this limitation, a novel OCT angiography technique based on the decorrelation of OCT signal amplitude due to flow was created. The full OCT spectrum can be split into several narrower spectral bands, resulting in the OCT resolution cell in each band being isotropic and less susceptible to axial motion noise. Inter-B-scan decorrelation can be determined using the narrower spectral bands separately and then averaged. Recombining the decorrelation images from the spectral bands yields angiograms that use the full information in the entire OCT spectral range.
    Type: Application
    Filed: January 12, 2018
    Publication date: August 30, 2018
    Inventors: Yali Jia, David Huang, Jason Tokayer, Ou Tan
  • Patent number: 9883810
    Abstract: Described herein is an optical coherence tomograph (OCT) angiography technique based on the decorrelation of OCT signal amplitude to provide flow information. The full OCT spectrum can be split into several narrower spectral bands, resulting in the OCT resolution cell in each band being isotropic and less susceptible to axial motion nose. Inter-B-scan decorrelation can be determined using the individual spectral bands separately and then averaged. Recombining the decorrelation images from the spectral bands yields angiograms that use the full information in the entire OCT spectral range. Such images provide significant improvement of signal-to-noise ratio (SNR) for both flow detection and connectivity of microvascular networks compared to other techniques. Further, creation of isotropic resolution cells can be useful for quantifying flow having equal sensitivity to axial and transverse flow.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: February 6, 2018
    Assignee: Oregon Health & Science University
    Inventors: Yali Jia, David Huang, Jason Tokayer, Ou Tan
  • Publication number: 20160331229
    Abstract: Impaired intraocular blood flow within vascular beds in the human eye is associated with certain ocular diseases including, for example, glaucoma, diabetic retinopathy and age-related macular degeneration. A reliable method to quantify blood flow in the various intraocular vascular beds could provide insight into the vascular component of ocular disease pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) was developed for imaging microcirculation within different intraocular regions. A method to quantify SSADA results was developed and used to detect perfusion changes in early stage ocular disease. Associated embodiments relating to methods for quantitatively measuring blood flow at various intraocular vasculature sites, systems for practicing such methods, and use of such methods and systems for diagnosing certain ocular diseases are herein described.
    Type: Application
    Filed: July 25, 2016
    Publication date: November 17, 2016
    Inventors: David Huang, Yali Jia, Jason Tokayer, Ou Tan
  • Publication number: 20160157737
    Abstract: Impaired intraocular blood flow within vascular beds in the human eye is associated with certain ocular diseases including, for example, glaucoma, diabetic retinopathy and age-related macular degeneration. A reliable method to quantify blood flow in the various intraocular vascular beds could provide insight into the vascular component of ocular disease pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) was developed for imaging microcirculation within different intraocular regions. A method to quantify SSADA results was developed and used to detect perfusion changes in early stage ocular disease. Associated embodiments relating to methods for quantitatively measuring blood flow at various intraocular vasculature sites, systems for practicing such methods, and use of such methods and systems for diagnosing certain ocular diseases are herein described.
    Type: Application
    Filed: January 29, 2016
    Publication date: June 9, 2016
    Inventors: David Huang, Yali Jia, Jason Tokayer, Ou Tan
  • Publication number: 20140228681
    Abstract: Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction, resulting in unacceptable signal to noise ratio (SNR). To overcome this limitation, a novel OCT angiography technique based on the decorrelation of OCT signal amplitude due to flow was created. The full OCT spectrum can be split into several narrower spectral bands, resulting in the OCT resolution cell in each band being isotropic and less susceptible to axial motion noise. Inter-B-scan decorrelation can be determined using the narrower spectral bands separately and then averaged. Recombining the decorrelation images from the spectral bands yields angiograms that use the full information in the entire OCT spectral range.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 14, 2014
    Inventors: Yali Jia, David Huang, Jason Tokayer, Ou Tan
  • Publication number: 20140073917
    Abstract: Impaired intraocular blood flow within vascular beds in the human eye is associated with certain ocular diseases including, for example, glaucoma, diabetic retinopathy and age-related macular degeneration. A reliable method to quantify blood flow in the various intraocular vascular beds could provide insight into the vascular component of ocular disease pathophysiology. Using ultrahigh-speed optical coherence tomography (OCT), a new 3D angiography algorithm called split-spectrum amplitude-decorrelation angiography (SSADA) was developed for imaging microcirculation within different intraocular regions. A method to quantify SSADA results was developed and used to detect perfusion changes in early stage ocular disease. Associated embodiments relating to methods for quantitatively measuring blood flow at various intraocular vasculature sites, systems for practicing such methods, and use of such methods and systems for diagnosing certain ocular diseases are herein described.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 13, 2014
    Applicant: Oregon Health & Science University
    Inventors: David Huang, Yali Jia, Jason Tokayer, Ou Tan