Patents by Inventor Jason Tsai

Jason Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9063535
    Abstract: A system and a method for converting a machine tool program in NC programming language to permit a robot controller to execute the program. A robot controller converts the NC program into robot language according to a conversion configuration table, and uses the converted language as pseudo program data internally stored in a data memory within the robot controller. Each M-code (Miscellaneous code) in the NC program is executed as a sub-program call using the robot language. The content of the sub-programs can be freely defined and programmed by the user and, therefore, can be customized for the specific application.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: June 23, 2015
    Assignee: Fanuc Robotics America Corporation
    Inventors: Akihiro Yanagita, Eric Lee, H. Dean McGee, Jason Tsai
  • Publication number: 20140297033
    Abstract: A method for adaptive control of a robotic operation of a robot includes providing a software program to generate process signals executable during the robotic operation, including one or more execution commands. A first Signal Value channel is provided to control at least one control process parameter of the robot, where the first Signal Value channel is subject to a first time latency. The execution timing of the first Signal Value channel is synchronized with the one or more execution commands by accounting for the first time latency in relation to the one or more execution commands. The software program is run to generate the process signals and the robot is operated in response to the synchronized execution timing of the execution commands.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Inventors: Jianming Tao, Charles R. Strybis, Bradley Niederquell, Jason Tsai
  • Publication number: 20140274246
    Abstract: A method and a system for resolving a two-player influencer blocking conflict are disclosed. The method and system may include to form a set of defender actions to increase a defender set of nodes; form a set of attacker actions; determine a defender strategy based the set of attacker actions, the defender strategy comprising a new defender action; to determine an attacker strategy that is based the set of defender actions; modify the set of defender actions to include the new defender action; update the set of attacker actions according to the attacker strategy; form a new set of attacker actions when the set of defender nodes increases more than a threshold; and form a display to show the defender set of nodes and the attacker set of nodes in a graph.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Jason Tsai, Thanh H. Nguyen, Milind Tambe
  • Patent number: 8820203
    Abstract: A method of controlling robot motion for small shape generation is provided. The method includes the steps of: a) providing a robot having a plurality of interconnected distal links with a respective plurality major axes and a respective plurality of minor axes, the robot having a controller for moving the robot to a starting position and along a path including a series of interpolated positions to be followed relative a workpiece; b) moving the robot to the starting position; c) determining a next interpolated position on the path, wherein the robot remains fixed in position about at least one of the major axes and a location and an approach vector of the next interpolated position can be achieved; and d) moving the robot to the next interpolated position. A method where the robot remains fixed in position about all major axes is also provided.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: September 2, 2014
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Yi Sun, H. Dean McGee, Jason Tsai, Hadi Akeel
  • Patent number: 8727348
    Abstract: An air-blowing assembly of game table, which is installed in a table frame of the game table, includes a face board, an inner board and an air space defined between the boards. One or more flow guide members are arranged in the air space, each flow guide member has multiple lattices arranged in rows. At least one air guide channel is formed on each flow guide member so that at least one lattice row has longitudinal notches and/or lateral notches. Accordingly, the flow guide member has longitudinal and/or transverse airflow passages. A fan is used to blow air into the air space. Under the guide of the air guide channels, the air flows out of the face board from fine orifices thereof.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: May 20, 2014
    Assignee: Zhejiang Elephant Sport Co., Ltd.
    Inventor: Jason Tsai
  • Publication number: 20140074286
    Abstract: A robot monitoring system for monitoring and analyzing robot related data and displaying the data on a smart device is provided. The robot monitoring system comprises at least one robot in local communication with at least one robot controller. The at least one robot controller has local processing power for monitoring, gathering, and analyzing data related to the at least one robot. The data analysis results are formatted into a message file that is communicated to a storage system. The message file may then be retrieved by a smart device having software running thereon for displaying the results of the data analysis.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 13, 2014
    Inventors: Gordon Geheb, Jason Tsai, Rick E. Wunderlich, Yi Sun, Don Kijek, Isaac Eckert, Ganesh Kalbavi, Ken Krause, Judy Evans, Ashok Prajapati
  • Publication number: 20140074289
    Abstract: A method for controlling a redundant robot arm includes the steps of selecting an application for performing a robotic process on a workpiece with the arm and defining at least one constraint on motion of the arm. Then an instruction set is generated based upon the selected application representing a path for a robot tool attached to the arm by operating the arm in one of a teaching mode and a programmed mode to perform the robotic process on the workpiece and movement of the arm is controlled during the robotic process. A constraint algorithm is generated to maintain a predetermined point on the arm to at least one of be on, be near and avoid a specified constraint in a robot envelope during movement of the arm, and a singularity algorithm is generated to avoid a singularity encountered during the movement of the arm.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 13, 2014
    Inventors: Di Xiao, Sai-Kai Cheng, Randy A. Graca, Matthew R. Sikowski, Jason Tsai
  • Publication number: 20130264772
    Abstract: An air-blowing assembly of game table, which is installed in a table frame of the game table, includes a face board, an inner board and an air space defined between the boards. One or more flow guide members are arranged in the air space, each flow guide member has multiple lattices arranged in rows. At least one air guide channel is formed on each flow guide member so that at least one lattice row has longitudinal notches and/or lateral notches. Accordingly, the flow guide member has longitudinal and/or transverse airflow passages. A fan is used to blow air into the air space. Under the guide of the air guide channels, the air flows out of the face board from fine orifices thereof.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Inventor: Jason TSAI
  • Patent number: 8473103
    Abstract: A method of and apparatus for achieving dynamic robot accuracy includes a control system utilizing a dual position loop control. An outer position loop uses secondary encoders on the output side of the gear train of a robot joint axis, while the inner position loop uses the primary encoder attached to the motor. Both single and dual loop control can be used on the same robot and tooling axes.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: June 25, 2013
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Jason Tsai, Eric Wong, Jianming Tao, H. Dean McGee, Hadi Akeel
  • Patent number: 8315736
    Abstract: A system for picking and packing applications is provided. The system includes a plurality of robots and a plurality of robot controllers. Each robot controller includes a load re-balance subsystem, a load balance subsystem, a robot state change detector subsystem, a communicator subsystem, and a motion control subsystem. Each of the robot controllers is interconnected and in communication with one another via the communicator subsystems. Each of the robots has a workload that may be selectively balanced. A method for balancing the workloads of the robots using built-in processors which run motion control is also provided.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: November 20, 2012
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Genesh Kalbavi, Gordon Geheb, Min-Ren Jean, Gerald A. Ross, Jason Tsai, Rick Wunderlich
  • Patent number: 8315738
    Abstract: A system and method for controlling avoiding collisions in a workcell containing multiple robots is provided. The system includes a sequence of instructions residing on a controller for execution thereon to perform an interference check automatic zone method. The interference check automatic zone method includes the steps of: determining a first portion of a common space that is occupied during a movement of a first robot along a first programmed path; determining a second portion of the common space that is occupied during a movement of a second robot along a second programmed path; comparing the first portion and the second portion to determine if an overlap exists therebetween; and moving the first robot and the second robot in response to whether or not the overlap exists.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 20, 2012
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Tien L. Chang, H. Dean McGee, Ho Cheung Wong, Jianming Tao, Jason Tsai
  • Publication number: 20120215351
    Abstract: A system and method for controlling avoiding collisions and deadlocks in a workcell containing multiple robots automatically determines the potential deadlock conditions and identifies a way to avoid these conditions. Deadlock conditions are eliminated by determining the deadlock-free motion statements prior to execution of the motions that have potential deadlock conditions. This determination of deadlock-free motion statements can be done offline, outside normal execution, or it can be done during normal production execution. If there is sufficient CPU processing time available, the determination during normal production execution provides the most flexibility to respond to dynamic conditions such as changes in I/O timing or the timing of external events or sequences. For minimal CPU impact the determination is done offline where many permutations of programming sequences can be analyzed and an optimized sequence of execution may be found.
    Type: Application
    Filed: May 2, 2012
    Publication date: August 23, 2012
    Inventors: H. Dean McGee, Tien L. Chang, Peter Swanson, Jianming Tao, Di Xiao, Ho Cheung Wong, Sai-Kai Cheng, Jason Tsai
  • Patent number: 7853356
    Abstract: An apparatus and a method for optimizing robot performance includes a computer connected to the robot controller for receiving performance data of the robot as the controller executes a path program. The computer uses the performance data, user specified optimization objectives and constraints and a kinematic/dynamic simulator to generate a new set of control system parameters to replace the default set in the controller. The computer repeats the process until the new set of control system parameters is optimized.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: December 14, 2010
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Jason Tsai, Yi Sun, Sai-Kai Cheng, Min Ren Jean, Hadi Akeel
  • Publication number: 20100191374
    Abstract: A method of and apparatus for achieving dynamic robot accuracy includes a control system utilizing a dual position loop control. An outer position loop uses secondary encoders on the output side of the gear train of a robot joint axis, while the inner position loop uses the primary encoder attached to the motor. Both single and dual loop control can be used on the same robot and tooling axes.
    Type: Application
    Filed: January 26, 2010
    Publication date: July 29, 2010
    Inventors: Jason Tsai, Eric Wong, Jianming Tao, H. Dean McGee, Hadi Akeel
  • Publication number: 20090326711
    Abstract: A system and method for controlling avoiding collisions in a workcell containing multiple robots is provided. The system includes a sequence of instructions residing on a controller for execution thereon to perform an interference check automatic zone method. The interference check automatic zone method includes the steps of: determining a first portion of a common space that is occupied during a movement of a first robot along a first programmed path; determining a second portion of the common space that is occupied during a movement of a second robot along a second programmed path; comparing the first portion and the second portion to determine if an overlap exists therebetween; and moving the first robot and the second robot in response to whether or not the overlap exists.
    Type: Application
    Filed: May 21, 2008
    Publication date: December 31, 2009
    Inventors: Tien L. Chang, H. Dean McGee, Ho Cheung Wong, Jianming Tao, Jason Tsai
  • Publication number: 20090271034
    Abstract: A system for picking and packing applications is provided. The system includes a plurality of robots and a plurality of robot controllers. Each robot controller includes a load re-balance subsystem, a load balance subsystem, a robot state change detector subsystem, a communicator subsystem, and a motion control subsystem. Each of the robot controllers is interconnected and in communication with one another via the communicator subsystems. Each of the robots has a workload that may be selectively balanced. A method for balancing the workloads of the robots using built-in processors which run motion control is also provided.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 29, 2009
    Inventors: Genesh Kalbavi, Gordon Geheb, Min-Ren Jean, Gerald A. Ross, Jason Tsai, Rick Wunderlich
  • Publication number: 20090199690
    Abstract: A method of controlling robot motion for small shape generation is provided. The method includes the steps of: a) providing a robot having a plurality of interconnected distal links with a respective plurality major axes and a respective plurality of minor axes, the robot having a controller for moving the robot to a starting position and along a path including a series of interpolated positions to be followed relative a workpiece; b) moving the robot to the starting position; c) determining a next interpolated position on the path, wherein the robot remains fixed in position about at least one of the major axes and a location and an approach vector of the next interpolated position can be achieved; and d) moving the robot to the next interpolated position. A method where the robot remains fixed in position about all major axes is also provided.
    Type: Application
    Filed: February 11, 2009
    Publication date: August 13, 2009
    Inventors: Yi Sun, H. Dean McGee, Jason Tsai, Hadi Akeel
  • Patent number: 7356141
    Abstract: A encoding/decoding method and device for a remote controller utilizing a baud rate to encrypt data for transmission. The encoding device includes an encoder encoding an identification code into an encrypted code; and an interpreter interpreting the un-encoded portion of the identification code and the encrypted code into a transmission signal. When the encrypted code is in a first base, the plain code corresponding to the encrypted code will be transmitted with a first baud rate; and when the encrypted code is in a second base, the plain code corresponding to the encrypted code will be transmitted with a second baud rate. The decoding device includes a receiver receiving the transmission signal; a interpreter connected to the receiver interpreting the transmission signal into a received signal; an encoder utilizing the same encoding algorithm as in the transmitter to generate a comparison code; and a processor comparing the received signal and the comparison code.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: April 8, 2008
    Assignee: Holtek Semiconductor Inc.
    Inventors: Ian Hsieh, Jason Tsai
  • Publication number: 20070286414
    Abstract: The present invention generally relates to encoding/decoding method and device used for remote controller, which utilizes baud rate to encrypt data for transmission. The encoding device of the present invention comprises an encoder for encoding an identification code into an encrypted code; an interpreter for interpreting the un-encoded portion of the identification code and the encrypted code into a transmission signal. Wherein, when the encrypted code is in a first base, the plain code corresponding to the encrypted code will be transmitted with a first baud rate; and when the encrypted code is in a second base, the plain code corresponding to the encrypted code will be transmitted with a second baud rate.
    Type: Application
    Filed: August 15, 2007
    Publication date: December 13, 2007
    Inventors: Ian Hsieh, Jason Tsai
  • Publication number: 20070244599
    Abstract: An apparatus and a method for optimizing robot performance includes a computer connected to the robot controller for receiving performance data of the robot as the controller executes a path program. The computer uses the performance data, user specified optimization objectives and constraints and a kinematic/dynamic simulator to generate a new set of control system parameters to replace the default set in the controller. The computer repeats the process until the new set of control system parameters is optimized.
    Type: Application
    Filed: April 14, 2006
    Publication date: October 18, 2007
    Applicant: FANUC Robotics America, Inc.
    Inventors: Jason Tsai, Yi Sun, Sai-Kai Cheng, Min Jean, Hadi Akeel