Patents by Inventor Jason Wen Yong Kuen

Jason Wen Yong Kuen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220157054
    Abstract: In implementations of object detection in images, object detectors are trained using heterogeneous training datasets. A first training dataset is used to train an image tagging network to determine an attention map of an input image for a target concept. A second training dataset is used to train a conditional detection network that accepts as conditional inputs the attention map and a word embedding of the target concept. Despite the conditional detection network being trained with a training dataset having a small number of seen classes (e.g., classes in a training dataset), it generalizes to novel, unseen classes by concept conditioning, since the target concept propagates through the conditional detection network via the conditional inputs, thus influencing classification and region proposal. Hence, classes of objects that can be detected are expanded, without the need to scale training databases to include additional classes.
    Type: Application
    Filed: January 31, 2022
    Publication date: May 19, 2022
    Applicant: Adobe Inc.
    Inventors: Zhe Lin, Xiaohui Shen, Mingyang Ling, Jianming Zhang, Jason Wen Yong Kuen
  • Publication number: 20220147838
    Abstract: Methods and systems disclosed herein relate generally to systems and methods for generating visual relationship graphs that identify relationships between objects depicted in an image. A vision-language application uses transformer encoders to generate a graph structure, in which the graph structure represents a dependency between a first region and a second region of an image. The dependency indicates that a contextual representation of the first region was derived, at least in part, by processing the second region. The contextual representation identifies a predicted identity of an image object depicted in the first region. The predicted identity is determined at least in part by identifying a relationship between the first region and other data objects associated with various modalities.
    Type: Application
    Filed: November 9, 2020
    Publication date: May 12, 2022
    Inventors: Jiuxiang Gu, Vlad Ion Morariu, Tong Sun, Jason wen yong Kuen, Handong Zhao
  • Publication number: 20220108131
    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for accurately and efficiently learning parameters of a distilled neural network from parameters of a source neural network utilizing multiple augmentation strategies. For example, the disclosed systems can generate lightly augmented digital images and heavily augmented digital images. The disclosed systems can further learn parameters for a source neural network from the lightly augmented digital images. Moreover, the disclosed systems can learn parameters for a distilled neural network from the parameters learned for the source neural network. For example, the disclosed systems can compare classifications of heavily augmented digital images generated by the source neural network and the distilled neural network to transfer learned parameters from the source neural network to the distilled neural network via a knowledge distillation loss function.
    Type: Application
    Filed: October 2, 2020
    Publication date: April 7, 2022
    Inventors: Jason Wen Yong Kuen, Zhe Lin, Jiuxiang Gu
  • Patent number: 11256918
    Abstract: In implementations of object detection in images, object detectors are trained using heterogeneous training datasets. A first training dataset is used to train an image tagging network to determine an attention map of an input image for a target concept. A second training dataset is used to train a conditional detection network that accepts as conditional inputs the attention map and a word embedding of the target concept. Despite the conditional detection network being trained with a training dataset having a small number of seen classes (e.g., classes in a training dataset), it generalizes to novel, unseen classes by concept conditioning, since the target concept propagates through the conditional detection network via the conditional inputs, thus influencing classification and region proposal. Hence, classes of objects that can be detected are expanded, without the need to scale training databases to include additional classes.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: February 22, 2022
    Assignee: Adobe Inc.
    Inventors: Zhe Lin, Xiaohui Shen, Mingyang Ling, Jianming Zhang, Jason Wen Yong Kuen
  • Publication number: 20200272822
    Abstract: In implementations of object detection in images, object detectors are trained using heterogeneous training datasets. A first training dataset is used to train an image tagging network to determine an attention map of an input image for a target concept. A second training dataset is used to train a conditional detection network that accepts as conditional inputs the attention map and a word embedding of the target concept. Despite the conditional detection network being trained with a training dataset having a small number of seen classes (e.g., classes in a training dataset), it generalizes to novel, unseen classes by concept conditioning, since the target concept propagates through the conditional detection network via the conditional inputs, thus influencing classification and region proposal. Hence, classes of objects that can be detected are expanded, without the need to scale training databases to include additional classes.
    Type: Application
    Filed: May 14, 2020
    Publication date: August 27, 2020
    Applicant: Adobe Inc.
    Inventors: Zhe Lin, Xiaohui Shen, Mingyang Ling, Jianming Zhang, Jason Wen Yong Kuen
  • Patent number: 10755099
    Abstract: In implementations of object detection in images, object detectors are trained using heterogeneous training datasets. A first training dataset is used to train an image tagging network to determine an attention map of an input image for a target concept. A second training dataset is used to train a conditional detection network that accepts as conditional inputs the attention map and a word embedding of the target concept. Despite the conditional detection network being trained with a training dataset having a small number of seen classes (e.g., classes in a training dataset), it generalizes to novel, unseen classes by concept conditioning, since the target concept propagates through the conditional detection network via the conditional inputs, thus influencing classification and region proposal. Hence, classes of objects that can be detected are expanded, without the need to scale training databases to include additional classes.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: August 25, 2020
    Assignee: Adobe Inc.
    Inventors: Zhe Lin, Xiaohui Shen, Mingyang Ling, Jianming Zhang, Jason Wen Yong Kuen
  • Publication number: 20200151448
    Abstract: In implementations of object detection in images, object detectors are trained using heterogeneous training datasets. A first training dataset is used to train an image tagging network to determine an attention map of an input image for a target concept. A second training dataset is used to train a conditional detection network that accepts as conditional inputs the attention map and a word embedding of the target concept. Despite the conditional detection network being trained with a training dataset having a small number of seen classes (e.g., classes in a training dataset), it generalizes to novel, unseen classes by concept conditioning, since the target concept propagates through the conditional detection network via the conditional inputs, thus influencing classification and region proposal. Hence, classes of objects that can be detected are expanded, without the need to scale training databases to include additional classes.
    Type: Application
    Filed: November 13, 2018
    Publication date: May 14, 2020
    Applicant: Adobe Inc.
    Inventors: Zhe Lin, Xiaohui Shen, Mingyang Ling, Jianming Zhang, Jason Wen Yong Kuen