Patents by Inventor Jason Wiggins

Jason Wiggins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120011779
    Abstract: Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to an HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a PCD material includes a plurality of bonded diamond grains that exhibit a substantially unimodal diamond grain size distribution characterized, at least in part, by a parameter ? that is less than about 1.0. ? = x 6 · ? , where x is the average grain size of the substantially unimodal diamond grain size distribution, and ? is the standard deviation of the substantially unimodal diamond grain size distribution.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 19, 2012
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Michael A. Vail, Kenneth E. Bertagnolli, Jason Wiggins, Jiang Qian, David P. Miess
  • Patent number: 8057775
    Abstract: Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to a HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a method includes subjecting a mixture to heat and pressure sufficient to form a PCD material. The mixture comprises a plurality of diamond particles exhibiting a diamond particle size distribution characterized, in part, by a parameter ? that is less than about 1.0, where ? = x 6 · ? , x is the average particle size of the diamond particle size distribution, and ? is the standard deviation of the diamond particle size distribution.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: November 15, 2011
    Assignee: US Synthetic Corporation
    Inventors: Michael A. Vail, Kenneth E. Bertagnolli, Jason Wiggins, Jiang Qian, David P. Miess
  • Publication number: 20110258937
    Abstract: Embodiments relate to superabrasive compacts including a diamond-silicon carbide composite table, and methods of fabricating such superabrasive compacts. In an embodiment, a method of fabricating a superabrasive compact is disclosed. An assembly comprising a mixture including diamond particles and silicon is formed. The silicon comprises amorphous silicon, crystalline silicon crystallized from amorphous silicon formed by a milling process, or combinations thereof. A substrate is positioned in proximity to the mixture. The assembly is subjected to a high-pressure/high-temperature process to form a superabrasive compact comprising a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including diamond grains dispersed through a matrix of silicon carbide grains.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 27, 2011
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Jiang Qian, Kenneth E. Bertagnolli, Michael A. Vail, Jason Wiggins, Jim I. Dewberry, David P. Miess
  • Patent number: 8020645
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: September 20, 2011
    Assignee: US Synthetic Corporation
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason Wiggins, Michael Vail, Debkumar Mukhopadhyay
  • Patent number: 7998573
    Abstract: Embodiments of the present invention relate to diamond-silicon carbide composites, superabrasive compacts including such diamond-silicon carbide composites, and methods of fabricating such diamond-silicon carbide composites and superabrasive compacts. In one embodiment, a superabrasive compact includes a substrate and a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including a matrix comprising nanometer-sized silicon carbide grains and micrometer-sized diamond grains dispersed through the matrix. In another embodiment, a method of fabricating a superabrasive compact is disclosed. An assembly comprising a mixture including diamond particles and silicon is formed. The silicon comprises amorphous silicon, crystalline silicon crystallized from amorphous silicon formed by a milling process, or combinations thereof. A substrate is positioned in proximity to the mixture.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: August 16, 2011
    Assignee: US Synthetic Corporation
    Inventors: Jiang Qian, Kenneth E. Bertagnolli, Michael A. Vail, Jason Wiggins, Jim I. Dewberry, David P. Miess
  • Publication number: 20110189468
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads or more and a specific magnetic saturation of about 15 Gauss·cm3/grams or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: April 13, 2011
    Publication date: August 4, 2011
    Applicant: US Synthetic Corporation
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Patent number: 7866418
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: January 11, 2011
    Assignee: US Synthetic Corporation
    Inventors: Kenneth E. Bertagnolli, Jiang Qian, Jason Wiggins, Michael A. Vail, Debkumar Mukhopadhyay
  • Publication number: 20100310855
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: July 29, 2010
    Publication date: December 9, 2010
    Applicant: US Synthetic Corporation
    Inventors: Kenneth E. BERTAGNOLLI, Jiang QIAN, Jason WIGGINS, Michael A. VAIL
  • Publication number: 20100307070
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: August 18, 2010
    Publication date: December 9, 2010
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. Bertagnolli, Jiang QIAN, Jason WIGGINS, Michael A. VAIL, Debkumar MUKHOPADHYAY
  • Publication number: 20100307069
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: August 18, 2010
    Publication date: December 9, 2010
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. BERTAGNOLLI, Jiang QIAN, Jason WIGGINS, Michael A. VAIL, Debkumar MUKHOPADHYAY
  • Publication number: 20100179213
    Abstract: The present invention concerns methods and compositions for treating a patient having, suspected of having, or at risk of developing cancer by targeting cancer stem cells.
    Type: Application
    Filed: November 11, 2009
    Publication date: July 15, 2010
    Applicants: MIRNA THERAPEUTICS, INC., The Board of Regents of the University of Texas System
    Inventors: Lubna Patrawala, Dean G. Tang, Kevin Kelnar, Jason Wiggins, Stephanie Volz, Jeffrey Shelton, Can Liu, Andreas G. Bader, David Brown
  • Publication number: 20100084196
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PCD includes a plurality of diamond grains defining a plurality of interstitial regions. A metal-solvent catalyst occupies at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oersteads (“Oe”) or more and a specific magnetic saturation of about 15 Gauss·cm3/grams (“G·cm3/g”) or less. Other embodiments are directed to polycrystalline diamond compacts (“PDCs”) employing such PCD, methods of forming PCD and PDCs, and various applications for such PCD and PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 8, 2010
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Kenneth E. BERTAGNOLLI, Jiang QIAN, Jason WIGGINS, Michael A. VAIL, Debkumar MUKHOPADHYAY
  • Publication number: 20090260895
    Abstract: Embodiments relate to methods of fabricating PCD materials by subjecting a mixture that exhibits a broad diamond particle size distribution to a HPHT process, PCD materials so-formed, and PDCs including a polycrystalline diamond table comprising such PCD materials. In an embodiment, a method includes subjecting a mixture to heat and pressure sufficient to form a PCD material. The mixture comprises a plurality of diamond particles exhibiting a diamond particle size distribution characterized, in part, by a parameter ? that is less than about 1.0, where ? = x 6 · ? , x is the average particle size of the diamond particle size distribution, and ? is the standard deviation of the diamond particle size distribution.
    Type: Application
    Filed: April 22, 2008
    Publication date: October 22, 2009
    Applicant: US Synthetic Corporation
    Inventors: Michael A. Vail, Kenneth E. Bertagnolli, Jason Wiggins, Jiang Qian, David P. Miess
  • Publication number: 20090152015
    Abstract: Embodiments of the present invention relate to superabrasive materials, superabrasive compacts employing such superabrasive materials, and methods of fabricating such superabrasive materials and compacts. One or more embodiments of a superabrasive material include a plurality of first superabrasive regions characteristic of being formed at least partially from a plurality of agglomerates, with each first superabrasive region including a plurality of first superabrasive grains that exhibit a first average grain size, and a matrix through which the plurality of first superabrasive regions is dispersed. The matrix includes a plurality second intercrystalline-bonded superabrasive grains that exhibit a second average grain size.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 18, 2009
    Applicant: US SYNTHETIC CORPORATION
    Inventors: Mohammad N. Sani, Kenneth E. Bertagnolli, Craig H. Cooley, Jason Wiggins
  • Publication number: 20080206576
    Abstract: Embodiments of the present invention relate to diamond-silicon carbide composites, superabrasive compacts including such diamond-silicon carbide composites, and methods of fabricating such diamond-silicon carbide composites and superabrasive compacts. In one embodiment, a superabrasive compact includes a substrate and a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including a matrix comprising nanometer-sized silicon carbide grains and micrometer-sized diamond grains dispersed through the matrix. In another embodiment, a method of fabricating a superabrasive compact is disclosed. An assembly comprising a mixture including diamond particles and silicon is formed. The silicon comprises amorphous silicon, crystalline silicon crystallized from amorphous silicon formed by a milling process, or combinations thereof. A substrate is positioned in proximity to the mixture.
    Type: Application
    Filed: December 12, 2007
    Publication date: August 28, 2008
    Applicant: US Synthetic Corporation
    Inventors: Jiang Qian, Kenneth E. Bertagnolli, Michael A. Vail, Jason Wiggins, Jim I. Dewberry, David P. Miess