Patents by Inventor Jason Wood

Jason Wood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10307199
    Abstract: The present invention relates to robotic surgical devices. More specifically, the present invention relates to robotic surgical devices that can be inserted into a patient's body and can be positioned within the patient's body.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: June 4, 2019
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane Farritor, Amy Lehman, Nathan A. Wood, Mark Rentschler, Jason Dumpert, Dmitry Oleynikov
  • Patent number: 10272252
    Abstract: An insulative feedthrough attachable to an active implantable medical device includes a feedthrough body having a material which is both electrically insulative, biocompatible and separates a body fluid side from a device side. A passageway is disposed through the feedthrough body. A composite conductor is disposed within the passageway and has a body fluid side metallic wire electrically conductive to a device side metallic wire. The body fluid side metallic wire extends from a first end disposed inside the passageway to a second end on the body fluid side. The device side metallic wire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side metallic wire is hermetically sealed to the feedthrough body. The body fluid side metallic wire is biocompatible and is not the same material as the device side metallic wire.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: April 30, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino
  • Patent number: 10272253
    Abstract: A feedthrough subassembly is attachable to an active implantable medical device. A via hole is disposed through an electrically insulative and biocompatible feedthrough body extending from a body fluid side to a device side. A composite fill partially disposed within the via hole extends between a first and a second composite fill end. The first composite fill end is disposed at or near the device side of the feedthrough body. The second composite fill end is disposed within the via hole recessed from the body fluid side. The composite fill includes a first portion of a ceramic reinforced metal composite including alumina and platinum and a second portion of a substantially pure platinum fill and/or a platinum wire. A via hole metallization covers a portion of the second composite fill end. A metallic leadwire is at least partially disposed within the via hole and gold brazed via hole metallization.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: April 30, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel
  • Patent number: 10249415
    Abstract: A method of manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of: a) forming an alumina ceramic body in a green state, or, stacking upon one another discrete layers of alumina ceramic in a green state and pressing; b) forming at least one via hole straight through the alumina ceramic body; c) filling the at least one via hole with a ceramic reinforced metal composite paste; d) drying the alumina ceramic body and the ceramic reinforced metal composite paste; e) forming a second hole straight through the ceramic reinforced metal composite paste being smaller in diameter in comparison to the at least one via hole; f) filling the second hole with a substantially pure metal paste; g) sintering the alumina ceramic body, the ceramic reinforced metal composite paste and the metal paste; and h) hermetically sealing the feedthrough dielectric body to a ferrule.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: April 2, 2019
    Assignee: Greatbatch Ltd.
    Inventors: Keith W. Seitz, Dallas J. Rensel, Brian P. Hohl, Jonathan Calamel, Xiaohong Tang, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Jason Woods, Richard L. Brendel
  • Patent number: 10128688
    Abstract: This disclosure provides systems, methods, and apparatus for the limiting of voltage in wireless power receivers. In one aspect, an apparatus includes a power transfer component configured to receive power wirelessly from a transmitter. The apparatus further includes a circuit coupled to the power transfer component and configured to reduce a received voltage when activated. The apparatus further includes a controller configured to activate the circuit when the received voltage reaches a first threshold value and configured to deactivate the circuit when the received voltage reaches a second threshold value. The apparatus further includes an antenna configured to generate a signal to the transmitter that signals to the transmitter that the received voltage reached the first threshold value.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: November 13, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: William H. Von Novak, III, Joseph L. Archambault, Adam Jason Wood, Edward Kenneth Kallal, Ryan Tseng, Gabriel Isaac Mayo
  • Publication number: 20180322306
    Abstract: Within one or more instances of a computing environment where an instance is a self-contained architecture to provide at least one database with corresponding search and file system. User information from the one or more instances of the computing environment is organized as zones. A zone is based on one or more characteristics of corresponding user information that are different than the instance to which the user information belongs. User information is selectively obfuscated prior to transmitting blocks of data including the obfuscated user information. The selective obfuscation is based on zone information for one or more zones to which the user information belongs.
    Type: Application
    Filed: May 19, 2017
    Publication date: November 8, 2018
    Inventors: Olumayokun Obembe, Gregory Lapouchnian, Vijayanth Devadhar, Jason Woods, Karthikeyan Govindarajan, Ashwini Bijwe, Prasad Peddada
  • Patent number: 10080889
    Abstract: A hermetically sealed filtered feedthrough includes a chip capacitor disposed on a circuit board on a device side. A first low impedance electrical connection is between a capacitor first end metallization and a conductor which is disposed through an insulator. A second low impedance electrical connection is between the capacitor second end metallization and a ferrule or housing. The second low impedance electrical connection may include an oxide-resistant electrical connection forming the hermetic seal between the insulator and the ferrule or housing and an electrical connection between and to the second end metallization and directly to the oxide-resistant electrical connection. Alternatively, the second low impedance electrical connection may include an oxide-resistant metal addition attached directly to the ferrule or housing and an electrical connection between and to the second end metallization and directly to the oxide-resistant metal addition.
    Type: Grant
    Filed: February 23, 2014
    Date of Patent: September 25, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel
  • Publication number: 20180236244
    Abstract: A feedthrough subassembly for an active implantable medical device includes a metallic ferrule having a conductive ferrule body, at least one surface disposed on a device side, and a ferrule opening passing through the at least one surface. An insulator body hermetically seals the ferrule opening of the conductive ferrule body by at least one of a first gold braze ceramic seal, a glass seal or a glass-ceramic seal. At least one hermetically sealed conductive pathway is disposed through the insulator body. At least one pocket formed in the at least one surface has a gold pocket pad disposed within. When the first gold braze ceramic seal is present, the first gold braze ceramic seal and the gold pocket pad are not physically touching one another.
    Type: Application
    Filed: April 3, 2018
    Publication date: August 23, 2018
    Inventors: Robert A. Stevenson, Christine A. Frysz, Jason Woods
  • Publication number: 20180197661
    Abstract: A method of manufacturing a feedthrough dielectric body for an active implantable medical device includes the steps of: a) forming an alumina ceramic body in a green state, or, stacking upon one another discrete layers of alumina ceramic in a green state and pressing; b) forming at least one via hole straight through the alumina ceramic body; c) filling the at least one via hole with a ceramic reinforced metal composite paste; d) drying the alumina ceramic body and the ceramic reinforced metal composite paste; e) forming a second hole straight through the ceramic reinforced metal composite paste being smaller in diameter in comparison to the at least one via hole; f) filling the second hole with a substantially pure metal paste; g) sintering the alumina ceramic body, the ceramic reinforced metal composite paste and the metal paste; and h) hermetically sealing the feedthrough dielectric body to a ferrule.
    Type: Application
    Filed: January 5, 2018
    Publication date: July 12, 2018
    Inventors: Keith W. Seitz, Dallas J. Rensel, Brian P. Hohl, Jonathan Calamel, Xiaohong Tang, Robert A. Stevenson, Christine A. Frysz, Thomas Marzano, Jason Woods, Richard L. Brendel
  • Publication number: 20180178017
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 28, 2018
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20180178016
    Abstract: A hermetically sealed feedthrough subassembly attachable to an active implantable medical device includes a first conductive leadwire extending from a first end to a second end, the first conductive leadwire first end disposed past a device side of an insulator body. A feedthrough filter capacitor is disposed on the device side. A second conductive leadwire is disposed on the device side having a second conductive leadwire first end at least partially disposed within a first passageway of the feedthrough filter capacitor and having a second conductive leadwire second end disposed past the feedthrough filter capacitor configured to be connectable to AIMD internal electronics. The second conductive leadwire first end is at, near or adjacent to the first conductive leadwire first end. A first electrically conductive material forms a three-way electrical connection electrically connecting the second conductive leadwire first end, the first conductive leadwire first end and a capacitor internal metallization.
    Type: Application
    Filed: December 18, 2017
    Publication date: June 28, 2018
    Inventors: Dominick J. Frustaci, Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Richard L. Brendel, Jason Woods
  • Publication number: 20180147439
    Abstract: The combination of a barbell and a barbell clamp for use in weightlifting that comprises a plurality of levers forming an oblong hole, a biasing spring, and a fastener.
    Type: Application
    Filed: November 30, 2017
    Publication date: May 31, 2018
    Inventor: Jason Woods
  • Publication number: 20180126175
    Abstract: An insulative feedthrough attachable to an active implantable medical device includes a feedthrough body having a material which is both electrically insulative, biocompatible and separates a body fluid side from a device side. A passageway is disposed through the feedthrough body. A composite conductor is disposed within the passageway and has a body fluid side metallic wire electrically conductive to a device side metallic wire. The body fluid side metallic wire extends from a first end disposed inside the passageway to a second end on the body fluid side. The device side metallic wire extends from a first end disposed inside the passageway to a second end on the device side. The body fluid side metallic wire is hermetically sealed to the feedthrough body. The body fluid side metallic wire is biocompatible and is not the same material as the device side metallic wire.
    Type: Application
    Filed: May 24, 2017
    Publication date: May 10, 2018
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel, Marc Gregory Martino
  • Publication number: 20180126176
    Abstract: A feedthrough subassembly is attachable to an active implantable medical device. A via hole is disposed through an electrically insulative and biocompatible feedthrough body extending from a body fluid side to a device side. A composite fill partially disposed within the via hole extends between a first and a second composite fill end. The first composite fill end is disposed at or near the device side of the feedthrough body. The second composite fill end is disposed within the via hole recessed from the body fluid side. The composite fill includes a first portion of a ceramic reinforced metal composite including alumina and platinum and a second portion of a substantially pure platinum fill and/or a platinum wire. A via hole metallization covers a portion of the second composite fill end. A metallic leadwire is at least partially disposed within the via hole and gold brazed via hole metallization.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 10, 2018
    Inventors: Keith W. Seitz, Thomas Marzano, Robert A. Stevenson, Christine A. Frysz, Jason Woods, Richard L. Brendel
  • Patent number: 9931514
    Abstract: A hermetically sealed filtered feedthrough assembly for an active implantable medical device includes an electrically conductive ferrule hermetically sealed by a first braze to an insulator. A conductor is hermetically sealed to and disposed through the insulator. A filter capacitor has an active electrode plate and a ground electrode plate which are disposed within and supported by a capacitor dielectric in an interleaved, partially overlapping relationship. A first passageway is disposed through the capacitor dielectric having a capacitor internal metallization which is connected to the active electrode plate. A capacitor external metallization electrically connects to the ground electrode plate. An oxide-resistant metal addition includes a conductive core with a conductive cladding of a different material. A first electrical connection is between the oxide-resistant metal addition and the capacitor external metallization.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 3, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Christine A. Frysz, Robert A. Stevenson, Jason Woods
  • Patent number: 9889306
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Grant
    Filed: July 11, 2015
    Date of Patent: February 13, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Patent number: 9687662
    Abstract: A hermetically sealed feedthrough for attachment to an active implantable medical device includes a dielectric substrate configured to be hermetically sealed to a ferrule or an AIMD housing. A via hole is disposed through the dielectric substrate from a body fluid side to a device side. A conductive fill is disposed within the via hole forming a filled via electrically conductive between the body fluid side and the device side. A conductive insert is at least partially disposed within the conductive fill. Then, the conductive fill and the conductive insert are co-fired with the dielectric substrate to form a hermetically sealed and electrically conductive pathway through the dielectric substrate between the body fluid side and the device side.
    Type: Grant
    Filed: July 11, 2015
    Date of Patent: June 27, 2017
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Xiaohong Tang, William C. Thiebolt, Christine A. Frysz, Keith W. Seitz, Richard L. Brendel, Thomas Marzano, Jason Woods, Dominick J. Frustaci, Steven W. Winn
  • Publication number: 20170126066
    Abstract: This disclosure provides systems, methods, and apparatus for the limiting of voltage in wireless power receivers. In one aspect, an apparatus includes a power transfer component configured to receive power wirelessly from a transmitter. The apparatus further includes a circuit coupled to the power transfer component and configured to reduce a received voltage when activated. The apparatus further includes a controller configured to activate the circuit when the received voltage reaches a first threshold value and configured to deactivate the circuit when the received voltage reaches a second threshold value. The apparatus further includes an antenna configured to generate a signal to the transmitter that signals to the transmitter that the received voltage reached the first threshold value.
    Type: Application
    Filed: September 9, 2016
    Publication date: May 4, 2017
    Inventors: William H. Von Novak, III, Joseph L. Archambault, Adam Jason Wood, Edward Kenneth Kallal, Ryan Tseng, Gabriel Isaac Mayo
  • Publication number: 20160367821
    Abstract: A hermetically sealed filtered feedthrough assembly for an active implantable medical device includes an electrically conductive ferrule hermetically sealed by a first braze to an insulator. A conductor is hermetically sealed to and disposed through the insulator. A filter capacitor has an active electrode plate and a ground electrode plate which are disposed within and supported by a capacitor dielectric in an interleaved, partially overlapping relationship. A first passageway is disposed through the capacitor dielectric having a capacitor internal metallization which is connected to the active electrode plate. A capacitor external metallization electrically connects to the ground electrode plate. An oxide-resistant metal addition includes a conductive core with a conductive cladding of a different material. A first electrical connection is between the oxide-resistant metal addition and the capacitor external metallization.
    Type: Application
    Filed: August 29, 2016
    Publication date: December 22, 2016
    Inventors: Christine A. Frysz, Robert A. Stevenson, Jason Woods
  • Patent number: RE46699
    Abstract: A hermetically sealed filtered feedthrough assembly for an AIMD includes an insulator hermetically sealed to a conductive ferrule or housing. A conductor is hermetically sealed and disposed through the insulator in non-conductive relation to the conductive ferrule or housing between a body fluid side and a device side. A feedthrough capacitor is disposed on the device side. A first low impedance electrical connection is between a first end metallization of the capacitor and the conductor. A second low impedance electrical connection is between a second end metallization of the capacitor and the ferrule or housing. The second low impedance electrical connection includes an oxide-resistant metal addition attached directly to the ferrule or housing and an electrical connection coupling the second end metallization electrically and physically directly to the oxide-resistant metal addition.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: February 6, 2018
    Assignee: Greatbatch Ltd.
    Inventors: Jason Woods, Richard L. Brendel, Robert A. Stevenson, Christopher Michael Williams, Robert Naugler, Christine A. Frysz