Patents by Inventor Jason Y. Wang

Jason Y. Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11060389
    Abstract: Systems and a method for efficient downhole separation of gas and liquids. An exemplary system provides a downhole gas separator for an artificial lift system. The downhole gas separator includes a separation section. The separation section includes a number of openings over an extended length, and wherein a size of each of the openings, a number openings, or both, is increased as a distance from a production tubing is increased.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: July 13, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jason Y. Wang, Carl J. Dyck, Federico G. Gallo
  • Patent number: 11028668
    Abstract: A method of reducing erosional peak velocity includes arranging a sand control screen assembly in an open hole section of a wellbore, the sand control screen assembly including a base pipe defining a plurality of flow ports, a sand screen arranged about the base pipe, and a wellbore isolation device deployed within an annulus defined between the sand control screen assembly and an inner wall of the wellbore. A fluid from a surrounding subterranean formation is circulated within the annulus, and the fluid within the annulus is diverted through the sand screen and into the base pipe upon approaching the wellbore isolation device. A peak velocity of the fluid flowing through the sand screen is reduced with a peak flux reducing assembly arranged axially adjacent the wellbore isolation device.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: June 8, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Federico G. Gallo, Jason Y. Wang, Christian S. Mayer
  • Patent number: 11008847
    Abstract: Systems and a method for efficient downhole separation of gas and liquids while providing well access are provided. An exemplary system provides a downhole gas separator for an artificial lift system. The downhole gas separator includes an outer casing joined to production tubing at one end and comprising a fitting for a plug at an opposite end from the production line. The outer casing comprises openings through the outer casing. A dip tube extends through the interior of the outer casing, wherein the dip tube is fluidically coupled to the production tubing at one end, and is open to the outer casing at an opposite end, wherein the opposite end is proximate to the fitting for the plug. The plug is disposed in the fitting, and comprises a retrieval bar configured to allow the plug to be pulled through the production tubing to the surface.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: May 18, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Carl J. Dyck, Jason Y. Wang, Matthew R. Blandford
  • Patent number: 10934830
    Abstract: Downhole gas separators, artificial lift systems including the downhole gas separators, hydrocarbon wells including the artificial lift systems, and methods of separating a gas from a liquid hydrocarbon within a hydrocarbon well. The downhole gas separators include an elongate outer housing that defines an enclosed volume, a fluid inlet port, and a gas outlet port. The downhole gas separators further include an elongate dip tube that extends within the enclosed volume, and the gas outlet port is configured to selectively provide fluid communication between the enclosed volume and an external region.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: March 2, 2021
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jason Y. Wang, Andrey A. Troshko, Scott R. Buechler, Michael C. Romer
  • Publication number: 20200141222
    Abstract: Systems and a method for efficient downhole separation of gas and liquids. An exemplary system provides a downhole gas separator for an artificial lift system. The downhole gas separator includes a separation section. The separation section includes a number of openings over an extended length, and wherein a size of each of the openings, a number openings, or both, is increased as a distance from a production tubing is increased.
    Type: Application
    Filed: September 23, 2019
    Publication date: May 7, 2020
    Inventors: Jason Y. Wang, Carl J. Dyck, Federico G. Gallo
  • Publication number: 20200131896
    Abstract: Systems and a method for efficient downhole separation of gas and liquids while providing well access are provided. An exemplary system provides a downhole gas separator for an artificial lift system. The downhole gas separator includes an outer casing joined to production tubing at one end and comprising a fitting for a plug at an opposite end from the production line. The outer casing comprises openings through the outer casing. A dip tube extends through the interior of the outer casing, wherein the dip tube is fluidically coupled to the production tubing at one end, and is open to the outer casing at an opposite end, wherein the opposite end is proximate to the fitting for the plug. The plug is disposed in the fitting, and comprises a retrieval bar configured to allow the plug to be pulled through the production tubing to the surface.
    Type: Application
    Filed: September 13, 2019
    Publication date: April 30, 2020
    Inventors: Carl J. Dyck, Jason Y. Wang, Matthew R. Blandford
  • Publication number: 20200024928
    Abstract: A method of reducing erosional peak velocity includes arranging a sand control screen assembly in an open hole section of a wellbore, the sand control screen assembly including a base pipe defining a plurality of flow ports, a sand screen arranged about the base pipe, and a wellbore isolation device deployed within an annulus defined between the sand control screen assembly and an inner wall of the wellbore. A fluid from a surrounding subterranean formation is circulated within the annulus, and the fluid within the annulus is diverted through the sand screen and into the base pipe upon approaching the wellbore isolation device. A peak velocity of the fluid flowing through the sand screen is reduced with a peak flux reducing assembly arranged axially adjacent the wellbore isolation device.
    Type: Application
    Filed: June 5, 2019
    Publication date: January 23, 2020
    Inventors: Federico G. Gallo, Jason Y. Wang, Christian S. Mayer
  • Publication number: 20200003041
    Abstract: Downhole gas separators, artificial lift systems including the downhole gas separators, hydrocarbon wells including the artificial lift systems, and methods of separating a gas from a liquid hydrocarbon within a hydrocarbon well. The downhole gas separators include an elongate outer housing that defines an enclosed volume, a fluid inlet port, and a gas outlet port. The downhole gas separators further include an elongate dip tube that extends within the enclosed volume, and the gas outlet port is configured to selectively provide fluid communication between the enclosed volume and an external region.
    Type: Application
    Filed: September 9, 2019
    Publication date: January 2, 2020
    Inventors: Jason Y. Wang, Andrey A. Troshko, Scott R. Buechler, Michael C. Romer
  • Patent number: 10450848
    Abstract: Downhole gas separators, artificial lift systems including the downhole gas separators, hydrocarbon wells including the artificial lift systems, and methods of separating a gas from a liquid hydrocarbon within a hydrocarbon well. The downhole gas separators include an elongate outer housing that defines an enclosed volume, a fluid inlet port, and a gas outlet port. The downhole gas separators further include an elongate dip tube that extends within the enclosed volume, and the gas outlet port is configured to selectively provide fluid communication between the enclosed volume and an external region.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: October 22, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jason Y. Wang, Andrey A. Troshko, Scott R. Buechler, Michael C. Romer
  • Patent number: 10443370
    Abstract: Artificial lift apparatus, systems, and methods for use in a deviated or horizontal wellbore, including a downhole gas separators, hydrocarbon wells including the artificial lift systems, and methods of separating a gas from a liquid hydrocarbon within a hydrocarbon well. Included is a downhole gas separator positioned in a deviated or horizontal wellbore, further including a flow-regulating device configured to restrict fluid flow through the gas outlet during at least a portion of each intake stroke of a reciprocating pump and to permit the fluid flow during at least a portion of each exhaust stroke of the reciprocating pump.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: October 15, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Jason Y. Wang, Andrey A. Troshko, Scott R. Buechler, Michael C. Romer
  • Publication number: 20170138167
    Abstract: Artificial lift apparatus, systems, and methods for use in a deviated or horizontal wellbore, including a downhole gas separators, hydrocarbon wells including the artificial lift systems, and methods of separating a gas from a liquid hydrocarbon within a hydrocarbon well. Included is a downhole gas separator positioned in a deviated or horizontal wellbore, further including a flow-regulating device configured to restrict fluid flow through the gas outlet during at least a portion of each intake stroke of a reciprocating pump and to permit the fluid flow during at least a portion of each exhaust stroke of the reciprocating pump.
    Type: Application
    Filed: August 24, 2016
    Publication date: May 18, 2017
    Inventors: Jason Y. Wang, Andrey A. Troshko, Scott R. Buechler, Michael C. Romer
  • Publication number: 20170138166
    Abstract: Downhole gas separators, artificial lift systems including the downhole gas separators, hydrocarbon wells including the artificial lift systems, and methods of separating a gas from a liquid hydrocarbon within a hydrocarbon well. The downhole gas separators include an elongate outer housing that defines an enclosed volume, a fluid inlet port, and a gas outlet port. The downhole gas separators further include an elongate dip tube that extends within the enclosed volume, and the gas outlet port is configured to selectively provide fluid communication between the enclosed volume and an external region.
    Type: Application
    Filed: August 24, 2016
    Publication date: May 18, 2017
    Inventors: Jason Y. Wang, Andrey A. Troshko, Scott R. Buechler, Michael C. Romer
  • Publication number: 20170122081
    Abstract: A well screen system having enhanced resistance to erosion, including a tubular defined by a circumferential wall having an outer surface and a first plurality of apertures circumferentially disposed longitudinally along at least a portion thereof, the first plurality of apertures extending radially through the circumferential wall; a series of circumferential channels positioned about the outer surface of the circumferential wall; a plurality of longitudinal ribs positioned adjacent the series of circumferential channels and extending radially therefrom, the plurality of longitudinal ribs forming a series of longitudinal channels; and a wire helically disposed around the tubular, substantially enclosing the series of circumferential channels and the series of longitudinal channels, wherein the series of circumferential channels is structured and arranged to permit fluid communication with the series of longitudinal channels.
    Type: Application
    Filed: July 13, 2016
    Publication date: May 4, 2017
    Inventors: Federico G. GALLO, Christian S. Mayer, Jason Y. Wang