Patents by Inventor Jasper Winters
Jasper Winters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250021012Abstract: A method of use for a lithographic tool includes scanning a substrate relative to a first micro-lens array (MLA) and a second MLA each having rows of lenslets. The first MLA has functional lenslets and extra lenslets and the scanning includes delivering light through the lenslets of the first MLA and second MLA to the substrate. The delivering includes delivering light through the functional lenslets to form a pattern on the substrate, the pattern having gaps caused by a positional or rotational misalignment between the functional lenslets of the first MLA and the second MLA. The delivering also includes delivering light through the extra lenslets to fill the gaps in the pattern.Type: ApplicationFiled: June 17, 2022Publication date: January 16, 2025Applicant: ASML NETHERLANDS B.V.Inventors: Jasper WINTERS, Erwin John VAN ZWET, Marcus Johannes VAN DER LANS, Pieter, Willem Herman DE JAGER, Emiel Anton VAN DE VEN
-
Patent number: 12196667Abstract: A physical object processing system is described that includes a process station, a transport facility, an optical imaging system, an image sensor and data process facilities. The transport facility transports objects along the process station that performs processing steps to the object. The image sensor acquires a digital image from an optical image of the physical objects provided by the optical imaging system. The data process facilities in turn process the digital image to control the process station. The optical imaging system maps the optical image of the at least one physical object onto the image sensor at an at least substantially fixed position during a time-interval for acquiring the digital image.Type: GrantFiled: May 18, 2021Date of Patent: January 14, 2025Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNOInventors: Jasper Winters, Robert Snel
-
Publication number: 20240329548Abstract: Systems and methods are disclosed for stabilizing an optical column. One system can include an optical column; a frame configured to support the optical column, the frame having a first coefficient of thermal expansion (CTE); and a subframe configured to be coupled to the optical column in at least two places by a first anchor and a second anchor to stabilize the optical column against a displacement or a rotation caused by thermal expansion in the frame or the optical column, the subframe having a second CTE lower than the first CTE.Type: ApplicationFiled: January 17, 2024Publication date: October 3, 2024Applicant: ASML Netherlands B.V.Inventors: Jasper WINTERS, Erwin John VAN ZWET, Marcus Johannes VAN DER LANS, Pieter Willem Herman DE JAGER, Emiel Anton VAN DE VEN
-
Publication number: 20240160110Abstract: A method for improved sequencing of light delivery in a lithographic process includes determining a sequence of intensities of light to be delivered that includes an interval within the sequence of intensities where substantially no light is delivered to the substrate and delivering light to a substrate by a light source utilizing a digital mirror device (DMD) according to the sequence of intensities.Type: ApplicationFiled: January 23, 2024Publication date: May 16, 2024Applicant: ASML Netherlands B.V.Inventors: Jasper WINTERS, Erwin John VAN ZWET, Marcus Johannes VAN DER LANS, Pieter Willem Herman DE JAGER, Geerten Frans Ijsbrand KRAMER
-
Publication number: 20230184667Abstract: A physical object processing system is described that includes a process station, a transport facility, an optical imaging system, an image sensor and data process facilities. The transport facility transports objects along the process station that performs processing steps to the object. The image sensor acquires a digital image from an optical image of the physical objects provided by the optical imaging system. The data process facilities in turn process the digital image to control the process station. The optical imaging system maps the optical image of the at least one physical object onto the image sensor at an at least substantially fixed position during a time-interval for acquiring the digital image.Type: ApplicationFiled: May 18, 2021Publication date: June 15, 2023Inventors: Jasper WINTERS, Robert SNEL
-
Patent number: 11650224Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprisingType: GrantFiled: November 14, 2019Date of Patent: May 16, 2023Assignee: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNOInventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
-
Patent number: 11402404Abstract: A method of operating a scanning probe microscope, wherein a control loop is provided which is configured for controlling one or more feedback parameters of the scanning probe microscope. One or more system identification measurements are performed during operation of the control loop, wherein during the one or more system identification measurements an excitation signal with a plurality of frequency components is introduced in the control loop and a resulting response signal indicative of a cantilever displacement or a stage-sample distance between a sensor device and a sample is measured. A model response function is identified using said excitation signal and said resulting response signal, wherein one or more settings and/or input signals are adapted in the control loop based on the identified model response function. The scanning probe microscope is used for characterization of the sample using the adapted one or more settings and/or input signals.Type: GrantFiled: August 8, 2019Date of Patent: August 2, 2022Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNOInventors: Jan Jacobus Benjamin Biemond, Lukas Kramer, Jasper Winters
-
Publication number: 20210311090Abstract: A method of operating a scanning probe microscope, wherein a control loop is provided which is configured for controlling one or more feedback parameters of the scanning probe microscope. One or more system identification measurements are performed during operation of the control loop, wherein during the one or more system identification measurements an excitation signal with a plurality of frequency components is introduced in the control loop and a resulting response signal indicative of a cantilever displacement or a stage-sample distance between a sensor device and a sample is measured. A model response function is identified using said excitation signal and said resulting response signal, wherein one or more settings and/or input signals are adapted in the control loop based on the identified model response function. The scanning probe microscope is used for characterization of the sample using the adapted one or more settings and/or input signals.Type: ApplicationFiled: August 8, 2019Publication date: October 7, 2021Inventors: Jan Jacobus Benjamin BIEMOND, Lukas KRAMER, Jasper WINTERS
-
Publication number: 20200081034Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprisingType: ApplicationFiled: November 14, 2019Publication date: March 12, 2020Applicant: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNOInventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
-
Patent number: 10495667Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprisingType: GrantFiled: July 3, 2015Date of Patent: December 3, 2019Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNOInventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
-
Patent number: 10488433Abstract: The invention is directed at a positioning arm for positioning of a scan head of a surface scanning measurement device—such as a scanning probe microscopy device—relative to a surface. The positioning arm comprises a base at a first end thereof for mounting the arm with the base to a static reference structure. The positioning arm further comprises a first and a second arm member extending from the base, the second arm member extending parallel to the first arm member. The arm comprises a bridge member at a second end thereof, connecting the first and the second arm members. The first and the second arm member are respectively connected to each one of said base and said bridge member by means of a hingeable connection.Type: GrantFiled: July 14, 2016Date of Patent: November 26, 2019Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNOInventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe
-
Patent number: 10215552Abstract: An optical coherence tomography microscopy apparatus (1) is presented for detecting a three-dimensional image of an optically translucent or reflective sample object (OS), the apparatus comprising an interferometric optical setup including a photo sensor unit (20). A sense signal Si from the photo sensor unit (20) is detected using a detection reference signal. The detection reference signal is derived from a signal indicative for a relative displacement of the sample object (OS) with respect to a reference object.Type: GrantFiled: June 30, 2015Date of Patent: February 26, 2019Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNOInventors: Robert Snel, Wouter Andries Jonker, Thomas Liebig, Jasper Winters
-
Patent number: 10067158Abstract: The invention is directed at a method of performing scanning probe microscopy on a substrate surface using a scanning probe microscopy system, the system including at least one probe head, the probe head comprising a probe tip arranged on a cantilever and a tip position detector for determining a position of the probe tip along a z-direction transverse to an image plane, the method comprising: positioning the at least one probe head relative to the substrate surface; moving the probe tip and the substrate surface relative to each other in one or more directions parallel to the image plane for scanning of the substrate surface with the probe tip; and determining the position of the probe tip with the tip position detector during said scanning for mapping nanostructures on the substrate surface; wherein said step of positioning is performed by placing the at least one probe head on a static carrier surface.Type: GrantFiled: July 3, 2015Date of Patent: September 4, 2018Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TNOInventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer
-
Publication number: 20180203036Abstract: The invention is directed at a positioning arm for positioning of a scan head of a surface scanning measurement device—such as a scanning probe microscopy device—relative to a surface. The positioning arm comprises a base at a first end thereof for mounting the arm with the base to a static reference structure. The positioning arm further comprises a first and a second arm member extending from the base, the second arm member extending parallel to the first arm member. The arm comprises a bridge member at a second end thereof, connecting the first and the second arm members. The first and the second arm member are respectively connected to each one of said base and said bridge member by means of a hingeable connection.Type: ApplicationFiled: July 14, 2016Publication date: July 19, 2018Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe
-
Publication number: 20170199023Abstract: An optical coherence tomography microscopy apparatus (1) is presented for detecting a three-dimensional image of an optically translucent or reflective sample object (OS), the apparatus comprising an interferometric optical setup including a photo sensor unit (20). A sense signal Si from the photo sensor unit (20) is detected using a detection reference signal. The detection reference signal is derived from a signal indicative for a relative displacement of the sample object (OS) with respect to a reference object.Type: ApplicationFiled: June 30, 2015Publication date: July 13, 2017Inventors: Robert SNEL, Wouter Andries JONKER, Thomas LIEBIG, Jasper WINTERS
-
Publication number: 20170146564Abstract: The invention is directed at a method of positioning a carrier on a flat surface using an positioning member, wherein the carrier comprises an upper part and a base which are connected to each other such as to be arranged remote from each other, wherein the positioning member is arranged between the base and the upper part such that the base is located at an opposite side of the positioning member with respect to the upper part of the carrier, the upper part resting on the positioning member prior to placing of the carrier onto the flat surface, wherein the upper part comprises three engagement elements, and wherein the positioning member comprises a support surface for receiving the three engagement elements of the upper part, said support surface including a plurality of sockets forming a kinematic mount for said three engagement elements, wherein the base comprises three landing elements, each landing element being associated with a respective one of the three engagement elements, and the method comprisingType: ApplicationFiled: July 3, 2015Publication date: May 25, 2017Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer, Albert Dekker
-
Publication number: 20170131323Abstract: The invention is directed at a method of performing scanning probe microscopy on a substrate surface using a scanning probe microscopy system, the system including at least one probe head, the probe head comprising a probe tip arranged on a cantilever and a tip position detector for determining a position of the probe tip along a z-direction transverse to an image plane, the method comprising: positioning the at least one probe head relative to the substrate surface; moving the probe tip and the substrate surface relative to each other in one or more directions parallel to the image plane for scanning of the substrate surface with the probe tip; and determining the position of the probe tip with the tip position detector during said scanning for mapping nanostructures on the substrate surface; wherein said step of positioning is performed by placing the at least one probe head on a static carrier surface.Type: ApplicationFiled: July 3, 2015Publication date: May 11, 2017Applicant: Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNOInventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans ljsbrand Kramer