Patents by Inventor Jaspreet S. Gandhi

Jaspreet S. Gandhi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170062365
    Abstract: A method of forming a semiconductor device assembly comprises forming on a first substrate, at least one bond pad comprising a first nickel material over the first substrate, a first copper material on the first nickel material, and a solder-wetting material on the first copper material. On a second substrate is formed at least one conductive pillar comprising a second nickel material, a second copper material directly contacting the second nickel material, and a solder material directly contacting the second copper material. The solder-wetting material is contacted with the solder material. The first copper material, the solder-wetting material, the second copper material, and the solder material are converted into a substantially homogeneous intermetallic compound interconnect structure. Additional methods, semiconductor device assemblies, and interconnect structures are also described.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventor: Jaspreet S. Gandhi
  • Publication number: 20170053881
    Abstract: Apparatuses and methods for providing thermal pathways from a substrate to a thermal bonding pad. The thermal pathways may be metal extensions of the thermal bonding pad that are disposed in channels formed in a backside passivation layer underneath the thermal bonding pad, and may be in direct contact with an underlying substrate. The thermal pathways may provide improved thermal dissipation from the substrate.
    Type: Application
    Filed: November 7, 2016
    Publication date: February 23, 2017
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: JASPREET S. GANDHI, JAMES M. DERDERIAN, SAMEER S. VADHAVKAR, JIAN LI
  • Patent number: 9564418
    Abstract: Interconnect structures with intermetallic palladium joints are disclosed herein. In one embodiment, a method of forming an interconnect structure includes depositing a first conductive material comprising nickel on a first conductive surface of a first die, and depositing a second conductive material comprising nickel on a second conductive surface of a second die spaced apart from the first surface. The method further includes depositing a third conductive material on the second conductive material, and thermally compressing tin/solder between the first and third conductive materials to form an intermetallic palladium joint that extends between the first conductive material and the second conductive material such that one end of the intermetallic palladium joint is bonded directly to the first conductive material and an opposite end of the intermetallic palladium joint is bonded directly to the second conductive material.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: February 7, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Jaspreet S. Gandhi
  • Publication number: 20160372452
    Abstract: A semiconductor die assembly having high efficiency thermal paths. In one embodiment, the semiconductor die assembly comprises a package support substrate, a first semiconductor die having a peripheral region and a stacking region, and a second semiconductor die attached to the stacking region of the first die such that the peripheral region is lateral of the second die. The assembly further includes a thermal transfer unit having a base attached to the peripheral region of the first die, a cover attached to the base by an adhesive, and a cavity defined by at least cover, wherein the second die is within the cavity. The assembly also includes an underfill in the cavity, wherein a fillet portion of the underfill extends a distance up along a portion of the footing and upward along at least a portion of the base.
    Type: Application
    Filed: September 1, 2016
    Publication date: December 22, 2016
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Patent number: 9520370
    Abstract: A method of forming a semiconductor device assembly comprises forming on a first substrate, at least one bond pad comprising a first nickel material over the first substrate, a first copper material on the first nickel material, and a solder-wetting material on the first copper material. On a second substrate is formed at least one conductive pillar comprising a second nickel material, a second copper material directly contacting the second nickel material, and a solder material directly contacting the second copper material. The solder-wetting material is contacted with the solder material. The first copper material, the solder-wetting material, the second copper material, and the solder material are converted into a substantially homogeneous intermetallic compound interconnect structure. Additional methods, semiconductor device assemblies, and interconnect structures are also described.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: December 13, 2016
    Assignee: Micron Technology, Inc.
    Inventor: Jaspreet S. Gandhi
  • Patent number: 9515002
    Abstract: Apparatuses and methods for providing thermal pathways from a substrate to a thermal bonding pad. The thermal pathways may be metal extensions of the thermal bonding pad that are disposed in channels formed in a backside passivation layer underneath the thermal bonding pad, and may be in direct contact with an underlying substrate. The thermal pathways may provide improved thermal dissipation from the substrate.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: December 6, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Jaspreet S Gandhi, James M. Derderian, Sameer S Vadhavkar, Jian Li
  • Publication number: 20160351530
    Abstract: Semiconductor devices and device packages include at least one semiconductor die electrically coupled to a substrate through a plurality of conductive structures. The at least one semiconductor die may be a plurality of memory dice, and the substrate may be a logic die. An underfill material disposed between the at least one semiconductor die and the substrate may include a thermally conductive material. An electrically insulating material is disposed between the plurality of conductive structures and the underfill material. Methods of attaching a semiconductor die to a substrate, such as for forming semiconductor device packages, include covering or coating at least an outer side surface of conductive structures, electrically coupling the semiconductor die to the substrate with an electrically insulating material, and disposing a thermally conductive material between the semiconductor die and the substrate.
    Type: Application
    Filed: August 9, 2016
    Publication date: December 1, 2016
    Inventors: Jaspreet S. Gandhi, Luke G. England, Owen R. Fay
  • Publication number: 20160343687
    Abstract: Semiconductor device assemblies with heat transfer structures formed from semiconductor materials are disclosed herein. In one embodiment, a semiconductor device assembly can include a thermal transfer structure formed from a semiconductor substrate. The thermal transfer structure includes an inner region, an outer region projecting from the inner region, and a cavity defined in the outer region by the inner and outer regions. The semiconductor device assembly further includes a stack of first semiconductor dies in the cavity, and a second semiconductor die attached to the outer region of the thermal transfer structure and enclosing the stack of first semiconductor dies within the cavity.
    Type: Application
    Filed: May 19, 2015
    Publication date: November 24, 2016
    Inventors: Sameer S. Vadhavkar, Jaspreet S. Gandhi, James M. Derderian
  • Publication number: 20160343689
    Abstract: Interconnect structures with improved conductive properties are disclosed herein. In one embodiment, an interconnect structure can include a first conductive member coupled to a first semiconductor die and a second conductive member coupled to second semiconductor die. The first conductive member includes a recessed surface defining a depression. The second conductive member extends at least partially into the depression of the first conductive member. A bond material within the depression can at least partially encapsulate the second conductive member and thereby bond the second conductive member to the first conductive member.
    Type: Application
    Filed: August 5, 2016
    Publication date: November 24, 2016
    Inventors: Jaspreet S. Gandhi, Wayne H. Huang, James M. Derderian
  • Publication number: 20160293519
    Abstract: Semiconductor devices having a through-silicon-via and methods of forming the same are described herein. As an example, a semiconductor device may include a substrate material, a through-silicon-via protrusion extending from the substrate material, a first dielectric material formed on the substrate material, a second dielectric material formed on the first dielectric material, and an interconnect formed on the through-silicon-via protrusion, where the interconnect formed is in an opening in the second dielectric material.
    Type: Application
    Filed: April 3, 2015
    Publication date: October 6, 2016
    Inventors: Jaspreet S. Gandhi, Wayne H. Huang
  • Publication number: 20160284626
    Abstract: Semiconductor devices having a conductive via and methods of forming the same are described herein. As an example, a semiconductor devices may include a conductive via formed in a substrate material, a barrier material, a first dielectric material on the barrier material, a coupling material formed on the substrate material and on at least a portion of the dielectric material, a second dielectric material formed on the coupling material, and an interconnect formed on the conductive via.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventor: Jaspreet S. Gandhi
  • Patent number: 9449940
    Abstract: Methods of forming a semiconductor structure include exposing a carrier substrate to a silane material to form a coating, removing a portion of the coating at least adjacent a periphery of the carrier substrate, adhesively bonding another substrate to the carrier substrate, and separating the another substrate from the carrier substrate. The silane material includes a compound having a structure of (XO)3Si(CH2)nY, (XO)2Si((CH2)nY)2, or (XO)3Si(CH2)nY(CH2)nSi(XO)3, wherein XO is a hydrolyzable alkoxy group, Y is an organofunctional group, and n is a nonnegative integer. Some methods include forming a polymeric material comprising Si—O—Si over a first substrate, removing a portion of the polymeric material, and adhesively bonding another substrate to the first substrate.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: September 20, 2016
    Assignee: Micron Technology, Inc.
    Inventor: Jaspreet S. Gandhi
  • Patent number: 9443744
    Abstract: A semiconductor die assembly having high efficiency thermal paths. In one embodiment, the semiconductor die assembly comprises a package support substrate, a first semiconductor die having a peripheral region and a stacking region, and a second semiconductor die attached to the stacking region of the first die such that the peripheral region is lateral of the second die. The assembly further includes a thermal transfer unit having a base attached to the peripheral region of the first die, a cover attached to the base by an adhesive, and a cavity defined by at least cover, wherein the second die is within the cavity. The assembly also includes an underfill in the cavity, wherein a fillet portion of the underfill extends a distance up along a portion of the footing and upward along at least a portion of the base.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: September 13, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Sameer S. Vadhavkar, Xiao Li, Steven K. Groothuis, Jian Li, Jaspreet S. Gandhi, James M. Derderian, David R. Hembree
  • Publication number: 20160233139
    Abstract: Apparatuses and methods for providing thermal pathways from a substrate to a thermal bonding pad. The thermal pathways may be metal extensions of the thermal bonding pad that are disposed in channels formed in a backside passivation layer underneath the thermal bonding pad, and may be in direct contact with an underlying substrate. The thermal pathways may provide improved thermal dissipation from the substrate.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 11, 2016
    Inventors: JASPREET S. GANDHI, JAMES M. DERDERIAN, SAMEER S. VADHAVKAR, JIAN LI
  • Patent number: 9412675
    Abstract: Interconnect structures with improved conductive properties are disclosed herein. In one embodiment, an interconnect structure can include a first conductive member coupled to a first semiconductor die and a second conductive member coupled to second semiconductor die. The first conductive member includes a recessed surface defining a depression. The second conductive member extends at least partially into the depression of the first conductive member. A bond material within the depression can at least partially encapsulate the second conductive member and thereby bond the second conductive member to the first conductive member.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: August 9, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Jaspreet S. Gandhi, Wayne H. Huang, James M. Derderian
  • Publication number: 20160225695
    Abstract: Systems and methods for uniform back side exposure of through-silicon vias (TSVs) are disclosed. In one embodiment, a semiconductor device comprises a substrate having a front side with circuit elements formed thereon, and a back side opposite the front side. A TSV extends between the front side and the back side of the substrate, and a dummy feature is disposed over the back side of the substrate, the dummy feature laterally spaced apart from the TSV and substantially coplanar with the TSV. In another embodiment, a semiconductor device comprises a substrate having a TSV formed therethrough, with a control material disposed over the back side of the substrate, the TSV substantially coplanar with the control material.
    Type: Application
    Filed: January 29, 2015
    Publication date: August 4, 2016
    Inventors: Jaspreet S. Gandhi, Wayne H. Huang
  • Publication number: 20160172242
    Abstract: Various embodiments of microelectronic devices and methods of manufacturing are described herein. In one embodiment, a method for aligning an electronic feature to a through-substrate via includes forming a self-aligned alignment feature having a wall around at least a portion of the TSV and aligning a photolithography tool to the self-aligned alignment feature. In some embodiments, the self-aligned alignment feature is defined by the topography of a seed material at a backside of the device.
    Type: Application
    Filed: February 23, 2016
    Publication date: June 16, 2016
    Inventors: Brandon P. Wirz, Keith Ypma, Christopher J. Gambee, Jaspreet S. Gandhi, Kevin M. Dowdle, Irina Vasilyeva, Yang Chao, Jon Hacker
  • Patent number: 9362143
    Abstract: Methods for forming semiconductor device packages include applying a photoimageable dielectric adhesive material to a major surface of a semiconductor die and at least partially over conductive elements on the semiconductor die. The photoimageable dielectric adhesive material may be removed from over the conductive elements. The conductive elements are aligned with and bonded to bond pads of a substrate, and the semiconductor die and the substrate are adhered with the photoimageable dielectric adhesive material. A semiconductor device package includes at least one semiconductor die including conductive structures thereon, a substrate including bond pads thereon that are physically and electrically connected to the conductive structures, and a developed photoimageable dielectric adhesive material disposed between the semiconductor die and the substrate around and between adjacent conductive structures.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: June 7, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Yangyang Sun, Michel Koopmans, Jaspreet S. Gandhi, Josh D. Woodland, Brandon P. Wirz
  • Patent number: 9337119
    Abstract: Semiconductor die assemblies having high efficiency thermal paths. In one embodiment, a semiconductor die assembly comprises a package support substrate, a first semiconductor die electrically mounted to the package support substrate, and a plurality of second semiconductor dies. The first die has a stacking site and a peripheral region extending laterally from the stacking site, and the bottom second semiconductor die is attached to the stacking site of the first die. The assembly further includes (a) a thermal transfer structure attached to the peripheral region of the first die that has a cavity in which the second dies are positioned and an inlet, and (b) an underfill material in the cavity. The underfill material has a fillet between the second semiconductor dies caused by injecting the underfill material into the cavity through the inlet port of the casing.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: May 10, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Sameer S. Vadhavkar, Xiao Li, Jaspreet S. Gandhi
  • Patent number: 9318438
    Abstract: A method for selectively removing material from a substrate without damage to copper filling a via and extending at least partially through the substrate. The method comprises oxidizing a semiconductor structure comprising a substrate and at least one copper feature and removing a portion of the substrate using an etchant comprising SF6 without forming copper sulfide on the at least one copper feature. Additional methods are also disclosed, as well as semiconductor structures produced from such methods.
    Type: Grant
    Filed: April 6, 2015
    Date of Patent: April 19, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Mark A. Bossler, Jaspreet S. Gandhi, Christopher J. Gambee, Randall S. Parker