Patents by Inventor Jau-Jan Deng

Jau-Jan Deng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10409078
    Abstract: A lensed beam-splitter prism array includes a beam-splitter substrate with a plurality of planar and parallel thin-film coatings each spanning a top substrate surface and a bottom substrate surface, and making an oblique angle therebetween, and a lens form layer formed on the top surface and having a plurality of lens forms, each lens form being above one of the plurality of coatings. A method for fabricating a lensed beam-splitter prism includes bonding a plurality of substrates to form a substrate stack having a coating between each adjacent substrate pair. The method also includes forming a stack slice by applying a plurality of parallel cuts at an oblique angle with respect to each coating. Each coating spans a first stack-slice surface and a second stack-slice surface opposing the first stack-slice surface. The method also includes forming a lens form layer on the first stack-slice surface spanning one or more coatings.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: September 10, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jau-Jan Deng, Regis Fan, Yi-Wei Liu
  • Patent number: 10393999
    Abstract: A six-aspheric-surface lens has six coaxially aligned lenses including, in order, a positive first lens, a negative second lens, a negative third lens, a negative fourth lens, a negative fifth lens, and a plano-gull-wing sixth lens. The six-aspheric-surface lens also includes a first biplanar substrate between the first lens and the second lens, a second biplanar substrate between the third lens and the fourth lens, and a third biplanar substrate between the fifth lens and the sixth lens. The first lens may have an Abbe number exceeding 48, the second lens and the third lens each may have an Abbe number less than 35. The first lens may have a focal length f1 and the second lens may have a focal length f2 such that ?0.27<f1/f2<?0.17. The six-aspheric-surface lens may have an effective focal length feff and a total track length T such that 0.9<T/feff<1.1.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: August 27, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chuen-Yi Yin, Jau-Jan Deng
  • Patent number: 10338352
    Abstract: A wide-angle lens system comprises a first lens having a concave aspheric surface and a planar surface, a second lens having a convex aspheric surface and a planar surface, a substrate, wherein the planar surface of the first lens is adjacent to a first side of the substrate and the planar surface of the second lens is adjacent to a second side of the substrate, a third lens behind the second lens having a concave aspheric surface and a planar surface, and a stop disposed between the first lens and the substrate. The planar surface of the third lens is secured to an outermost surface of an image sensor.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: July 2, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chuen-Yi Yin, Jau-Jan Deng, Ting-Yu Cheng
  • Patent number: 10288854
    Abstract: An athermal compound lens includes a plano-concave lens and a plano-convex lens. The plano-concave lens has a first focal length, a first refractive index n1, and planar object-side surface opposite a concave image-side surface. The plano-convex lens is axially aligned with the plano-concave lens and has (i) a second focal length, (ii) a second refractive index n2, (iii) a planar image-side surface, and (iv) a convex object-side surface between the planar image-side surface and the concave image-side surface. In a free-space wavelength range and temperature range: (a) the first focal length divided by the second focal length is less than ?0.68, and (b) first and second refractive indices n1 and n2 have respective temperature dependences ? ? ? n 1 ? ? ? T ? ? and ? ? ? ? ? n 2 ? ? ? T that satisfy ( ? ? ? n 1 ? ? ? T ) / ( ? ? ? n 2 ? ? ? T ) ? 2.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 14, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Wei Lin Tung, Jau-Jan Deng
  • Patent number: 10204947
    Abstract: A cover-glass-free array camera with individually light-shielded cameras includes an image sensor array having a plurality of photosensitive pixel arrays formed in a silicon substrate, and a lens array bonded to the silicon substrate, wherein the lens array includes (a) a plurality of imaging objectives respectively registered to the photosensitive pixel arrays to form respective individual cameras therewith, and (b) a first opaque material between each of the imaging objectives to prevent crosstalk between individual cameras.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: February 12, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Teng-Sheng Chen, Jau-Jan Deng, Chia-Yang Chang, Wei-Feng Lin
  • Patent number: 10191255
    Abstract: A four-element athermal lens includes four coaxially aligned lenses including a (i) first lens and, in order of increasing distance therefrom and on a same side thereof, (ii) a second lens, a third lens, and a fourth lens. The first lens and the second lens are positive lenses. The third and fourth lenses are negative lenses. The first lens, second lens, third lens, and fourth lens have equal respective refractive indices n1, n2, n3, and n4. A difference between (i) the maximum of n1, n2, n3, and n4 and (ii) the minimum of n1, n2, n3, and n4 being less than 0.05 in a free-space wavelength range. Refractive indices n1, n2, n3, and n4 have respective temperature dependences ? ? ? n 1 ? ? ? T , ? ? ? n 2 ? ? ? T , ? ? ? n 3 ? ? ? T , ? ? ? n 4 ? ? ? T .
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: January 29, 2019
    Assignee: OmniVision Technologies, Inc.
    Inventors: Tingyu Cheng, Jau-Jan Deng
  • Publication number: 20190011677
    Abstract: A wide-angle lens system comprises a first lens having a concave aspheric surface and a planar surface, a second lens having a convex aspheric surface and a planar surface, a substrate, wherein the planar surface of the first lens is adjacent to a first side of the substrate and the planar surface of the second lens is adjacent to a second side of the substrate, a third lens behind the second lens having a concave aspheric surface and a planar surface, and a stop disposed between the first lens and the substrate. The planar surface of the third lens is secured to an outermost surface of an image sensor.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 10, 2019
    Inventors: Chuen-Yi Yin, Jau-Jan Deng, Ting-Yu Cheng
  • Patent number: 10082651
    Abstract: In an embodiment, a slim imager is disclosed. The slim imager includes a substrate including an aperture, an image sensor, and an optics unit. The image sensor is on a bottom side of the substrate, spans the aperture, and has an aperture-facing top surface. The optics unit is on a top side of the substrate, spans the aperture, and includes a transmissive optical element having an aperture-facing bottom surface. A volume partially bound by the aperture-facing top surface and the aperture-facing bottom surface has a refractive index less than 1.01 at visible wavelengths.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: September 25, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Teng-Sheng Chen, Jau-Jan Deng, Wei-Feng Lin
  • Publication number: 20180252846
    Abstract: An athermal lens system includes a converging lens element having a negative first thermo-optic coefficient, and a diverging lens element having a second thermo-optic coefficient more negative than the first thermo-optic coefficient, wherein the diverging lens element is coupled with the converging lens element to form a converging athermal doublet lens.
    Type: Application
    Filed: March 6, 2017
    Publication date: September 6, 2018
    Inventors: Chuen-Yi YIN, Jau-Jan DENG
  • Publication number: 20180196227
    Abstract: A four-surface, near-infrared wafer-level lens system for imaging a scene onto an image plane includes (a) a first wafer-level lens having a first convex lens surface facing the scene and a second concave lens surface facing the image plane, and (b) a second wafer-level lens disposed between the first wafer-level lens and the image plane and including a third concave lens surface facing the scene and a fourth aspheric convex lens surface facing the image plane. The four-surface, near-infrared wafer-level lens system is further characterized by an image resolution corresponding to at least 60% contrast of 2 line pairs per millimeter in object plane across a scene portion having at least 10 millimeters extent in the object plane.
    Type: Application
    Filed: January 10, 2017
    Publication date: July 12, 2018
    Inventors: Tingyu CHENG, Jau-Jan DENG
  • Publication number: 20180149843
    Abstract: An athermal compound lens includes a plano-concave lens and a plano-convex lens. The plano-concave lens has a first focal length, a first refractive index n1, and planar object-side surface opposite a concave image-side surface. The plano-convex lens is axially aligned with the plano-concave lens and has (i) a second focal length, (ii) a second refractive index n2, (iii) a planar image-side surface, and (iv) a convex object-side surface between the planar image-side surface and the concave image-side surface. In a free-space wavelength range and temperature range: (a) the first focal length divided by the second focal length is less than ?0.68, and (b) first and second refractive indices n1 and n2 have respective temperature dependences ? ? ? n 1 ? ? ? T ? ? and ? ? ? ? ? n 2 ? ? ? T that satisfy ( ? ? ? n 1 ? ? ? T ) / ( ? ? ? n 2 ? ? ? T ) ? 2.
    Type: Application
    Filed: November 30, 2016
    Publication date: May 31, 2018
    Inventors: Wei Lin TUNG, Jau-Jan DENG
  • Patent number: 9958680
    Abstract: A near-eye display device, with coaxial eye imaging, for mounting in field of view of an eye of a user, includes a display unit for displaying a display image, a viewing unit for (i) presenting the display image to the eye based upon polarized visible light received from the display unit and (ii) transmitting ambient light from an ambient scene toward the eye, and an eye imaging unit including (a) an illumination module for generating infrared light, (b) a first polarizing beamsplitter interface, disposed between the display unit and the viewing unit, for (i) merging a polarized infrared component of the infrared light with the polarized visible light and (ii) separating from the polarized visible light a portion of the polarized infrared component reflected by the eye, and (c) a camera for forming an image of the eye based upon the polarized infrared component reflected by the eye.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: May 1, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yi-Wei Liu, Jau-Jan Deng, Regis Fan
  • Publication number: 20180100992
    Abstract: A six-aspheric-surface lens has six coaxially aligned lenses including, in order, a positive first lens, a negative second lens, a negative third lens, a negative fourth lens, a negative fifth lens, and a plano-gull-wing sixth lens. The six-aspheric-surface lens also includes a first biplanar substrate between the first lens and the second lens, a second biplanar substrate between the third lens and the fourth lens, and a third biplanar substrate between the fifth lens and the sixth lens. The first lens may have an Abbe number exceeding 48, the second lens and the third lens each may have an Abbe number less than 35. The first lens may have a focal length f1 and the second lens may have a focal length f2 such that ?0.27<f1/f2<?0.17. The six-aspheric-surface lens may have an effective focal length feff and a total track length T such that 0.9<T/feff<1.1.
    Type: Application
    Filed: October 6, 2016
    Publication date: April 12, 2018
    Inventors: Chuen-Yi YIN, Jau-Jan DENG
  • Publication number: 20180081154
    Abstract: A four-element athermal lens includes four coaxially aligned lenses including a (i) first lens and, in order of increasing distance therefrom and on a same side thereof, (ii) a second lens, a third lens, and a fourth lens. The first lens and the second lens are positive lenses. The third and fourth lenses are negative lenses. The first lens, second lens, third lens, and fourth lens have equal respective refractive indices n1, n2, n3, and n4. A difference between (i) the maximum of n1, n2, n3, and n4 and (ii) the minimum of n1, n2, n3, and n4 being less than 0.05 in a free-space wavelength range. Refractive indices n1, n2, n3, and n4 have respective temperature dependences ? ? ? n 1 ? ? ? T , ? ? ? n 2 ? ? ? T , ? ? ? n 3 ? ? ? T , ? ? ? n 4 ? ? ? T .
    Type: Application
    Filed: September 22, 2016
    Publication date: March 22, 2018
    Inventors: Tingyu Cheng, Jau-Jan Deng
  • Publication number: 20180081163
    Abstract: An endoscope imager includes a system-in-package and a specularly reflective surface. The system-in-package includes (a) a camera module having an imaging lens with an optical axis and (b) an illumination unit. The system-in-package includes (a) a camera module having an imaging lens with an optical axis and (b) an illumination unit configured to emit illumination propagating in a direction away from the imaging lens, the direction having a component parallel to the optical axis. The specularly reflective surface faces the imaging lens and forming an oblique angle with the optical axis, to deflect the illumination toward a scene and deflect light from the scene toward the camera module.
    Type: Application
    Filed: September 21, 2016
    Publication date: March 22, 2018
    Inventors: Yi-Fan Lin, Wei-Ping Chen, Jau-Jan Deng, Suganda Jutamulia
  • Publication number: 20180076246
    Abstract: A cover-glass-free array camera with individually light-shielded cameras includes an image sensor array having a plurality of photosensitive pixel arrays formed in a silicon substrate, and a lens array bonded to the silicon substrate, wherein the lens array includes (a) a plurality of imaging objectives respectively registered to the photosensitive pixel arrays to form respective individual cameras therewith, and (b) a first opaque material between each of the imaging objectives to prevent crosstalk between individual cameras.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 15, 2018
    Inventors: Teng-Sheng Chen, Jau-Jan Deng, Chia-Yang Chang, Wei-Feng Lin
  • Patent number: 9902120
    Abstract: A wide-angle camera and fabrication method thereof includes a sensor with a plurality of pixel sub-arrays and an array of optical elements on a first side of a substrate. Each of the optical elements is capable of forming an image from a field of view onto a different one of the pixel sub-arrays. The wide-angle camera also includes an array of achromatic doublet prisms on a second side of the substrate, where each of the achromatic doublet prisms is aligned to provide a viewing angle with a different one of the optical elements. The sensor captures a wide-angle field of view while having a compact format.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: February 27, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Wei-Ping Chen, Jau-Jan Deng, Tsung-Wei Wan, Chuen-Yi Yin
  • Patent number: 9897786
    Abstract: A two-surface narrow field-of-view (FOV) compound lens for producing an image of an object at an image plane of an imaging system includes a biplanar substrate between a plano-convex lens and a plano-concave lens having a common optical axis. The plano-convex lens has a first planar surface on a first side of the biplanar substrate and is formed of a material having a first Abbe number. The plano-concave lens has a second planar surface on a second side of the biplanar substrate opposite the first side, and is formed of a material having a second Abbe number less than the first Abbe number. The first and second lens have respective focal lengths F1 and F2 that may satisfy ?1.4<F2/F1 <?0.9. The compound lens may have a total track length T and an effective focal length feff such that their ratio satisfies 0.88<T/feff<0.98.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: February 20, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chuen-Yi Yin, Jau-Jan Deng
  • Patent number: 9897778
    Abstract: A four-surface narrow field-of-view compound lens includes a first biplanar substrate between a first lens and a second lens, the first lens being plano-convex and the second lens being plano-concave. The compound lens also includes a second biplanar substrate between a third lens and a fourth lens, the third lens being plano-convex and the fourth lens being plano-concave. The second lens and third lens are between the first biplanar substrate and the second biplanar substrate. The first lens, second lens, third lens, and fourth lens are coaxial and are formed of materials having a first, second, third, and fourth Abbe number respectively and focal lengths F1, F2, F3, and F4 respectively. The first Abbe number exceeds the second Abbe number and the third Abbe number exceeds the fourth Abbe number. Ratio F1/F2 may satisfy ?0.32<F1/F2<?0.18 and ratio F4/F3 may satisfy ?0.72<F4/F3<?0.48.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: February 20, 2018
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chuen-Yi Yin, Jau-Jan Deng
  • Patent number: 9835821
    Abstract: A five-surface wide field-of view compound lens incudes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a first biplanar substrate, and a second biplanar substrate. The first lens is plano-concave; the second, the third lens, and the fourth lens are plano-convex; the fifth lens is a plano-gull-wing lens. The first biplanar substrate is between the second lens and the third lens. The second biplanar substrate is between the fourth lens and the fifth lens. The first lens has a first Abbe number. The second lens has a second Abbe number less than the first Abbe number. A camera module includes the five-surface wide FOV compound lens and a glass substrate having a planar surface adjoining a first planar surface of the first lens, the first lens being between the glass substrate and the second lens.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: December 5, 2017
    Assignee: OmniVision Technologies, Inc.
    Inventors: Chuen-Yi Yin, Jau-Jan Deng