Patents by Inventor Jaume Anguera

Jaume Anguera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10879587
    Abstract: A metal frame antenna (MFA) system comprises multiple arms developed to cover multiple ranges of frequencies normally required in a wireless device such as a phone. The MFA system comprises a ground plane layer, a first electrical arm including a strip element at an edge of a phone spaced apart from an edge of the ground plane layer, a second electrical arm comprising a strip element and/or an antenna booster, a branching system connecting the first and second arms to a feeding system that is connected to the RF system of the phone.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: December 29, 2020
    Assignee: Fractus Antennas, S.L.
    Inventors: Aurora Andujar Linares, Jaume Anguera Pros, Carles Puente Baliarda
  • Publication number: 20200403295
    Abstract: A radiating system for transmitting and receiving signals in first and second frequency regions includes a radiating structure, a radiofrequency system, and an external port. The radiating structure has first and second isolated radiation boosters coupled to a ground plane layer. A first internal port of the radiating structure is between the first radiation booster and the ground plane layer, and a second internal port is between the second radiation booster and the ground plane layer. A distance between the two internal ports is less than 0.06 times a wavelength of the lowest frequency. The maximum size of the first and second radiation boosters is smaller than 1/30 times the wavelength of the lowest frequency. The radiofrequency system includes two ports connected respectively to the first and the second internal ports of the radiating structure, and a port connected to the external port of the radiating system.
    Type: Application
    Filed: July 7, 2020
    Publication date: December 24, 2020
    Inventors: Jaume ANGUERA PROS, Aurora ANDUJAR LINARES, Carles PUENTE BALIARDA
  • Publication number: 20200395666
    Abstract: An antenna includes at least two radiating arm structures made of or limited by a conductor, superconductor or semiconductor material. The two arms are coupled through a region on first and second superconducting arms such that the combined structure forms a small antenna with broadband behavior, multiband behavior or a combination thereof. The coupling between the two radiating arms is obtained via the shape and spatial arrangement thereof, in which at least one portion on each arm is placed in close proximity to each other (e.g., at a distance smaller than 1/10 of the longest free-space operating wavelength) to allow electromagnetic fields in one arm to be transferred to the other through close proximity regions. The proximity regions are spaced from the feeding port of the antenna (e.g., greater than 1/40 of the free-space longest operating wavelength) and specifically exclude the feeding port of the antenna.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 17, 2020
    Inventors: Carles PUENTE BALIARDA, Jaume ANGUERA PROS, Jordi SOLER CASTANY, Antonio CONDES MARTINEZ
  • Publication number: 20200381832
    Abstract: A radiating system configured to operate electromagnetic wave signals from first and second frequency regions, wherein the lowest frequency of the second frequency region is above the highest frequency of the first frequency region: the radiating system comprising a radiating structure, a radiofrequency system, and an external port. The radiating structure comprises a first boosting element electrically connected to a first conductive element, a second boosting element electrically connected to a second conductive element, and a ground plane layer. The radiofrequency system comprises a first matching network connected to the first conductive element and the external port, and a second matching network connected to the second conductive element and a ground port. The first and second matching networks are configured to modify the impedance of the radiating structure providing impedance matching to the radiating system, at the external port, in the first and second frequency regions.
    Type: Application
    Filed: August 20, 2020
    Publication date: December 3, 2020
    Inventors: Jaume ANGUERA PROS, Aurora ANDUJAR LINARES
  • Patent number: 10840591
    Abstract: The described system refers to a Sharkfin wireless device comprising a radiating structure, a feeding system and an external port, the radiating structure comprising at least a radiation booster, a ground plane layer and a conductive element that connects at least one the radiation booster to the ground plane layer. The radiating system arrangement features reduced dimensions and multiband operation including low-frequency bands like LTE700.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: November 17, 2020
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Aurora Andujar Linares, Anna Teotino
  • Publication number: 20200358191
    Abstract: A radiating system comprises a radiating structure, first and second external ports, and a radiofrequency system. The radiating structure comprises a ground plane layer including a connection point, a single radiation booster including a connection point, and a first internal port defined between the connection points of the single radiation booster and the ground plane layer. The first and second external ports each provide operation in at least one frequency band. The radiofrequency system includes a first port connected to the first internal port of the radiating structure, and second and third ports respectively connected to the first and second external ports.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Inventors: Jaume ANGUERA PROS, Aurora ANDUJAR LINARES, Carles PUENTE BALIARDA, Josep MUMBRU
  • Patent number: 10833411
    Abstract: A radiating system for transmitting and receiving signals in first and second frequency regions includes a radiating structure, a radiofrequency system, and an external port. The radiating structure has first and second isolated radiation boosters coupled to a ground plane layer. A first internal port of the radiating structure is between the first radiation booster and the ground plane layer, and a second internal port is between the second radiation booster and the ground plane layer. A distance between the two internal ports is less than 0.06 times a wavelength of the lowest frequency. The maximum size of the first and second radiation boosters is smaller than 1/30 times the wavelength of the lowest frequency. The radiofrequency system includes two ports connected respectively to the first and the second internal ports of the radiating structure, and a port connected to the external port of the radiating system.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: November 10, 2020
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Cristina Picher Planellas, Aurora Andujar Linares, Carles Puente Baliarda
  • Publication number: 20200295462
    Abstract: The present invention relates to an integrated circuit package comprising at least one substrate, each substrate including at least one layer, at least one semiconductor die, at least one terminal, and an antenna located in the integrated circuit package, but not on said at least one semiconductor die. The conducting pattern comprises a curve having at least five sections or segments, at least three of the sections or segments being shorter than one-tenth of the longest free-space operating wavelength of the antenna, each of the five sections or segments forming a pair of angles with each adjacent segment or section, wherein the smaller angle of each of the four pairs of angles between sections or segments is less than 180° (i.e.
    Type: Application
    Filed: March 27, 2020
    Publication date: September 17, 2020
    Inventors: Jordi SOLER CASTANY, Jaume ANGUERA PROS, Carles PUENTE BALIARDA, Carmen BORJA BORAU
  • Publication number: 20200295441
    Abstract: A wireless wearable device comprises a radiating system that contains at least a non-resonant element disposed in different arrangements within a radiating structure in the radiating system, featuring compact dimensions and an adequate performance when operating on a carrier living body.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 17, 2020
    Inventors: Jaume ANGUERA PROS, Aurora ANDUJAR LINARES
  • Patent number: 10777896
    Abstract: A radiating system configured to operate electromagnetic wave signals from first and second frequency regions, wherein the lowest frequency of the second frequency region is above the highest frequency of the first frequency region: the radiating system comprising a radiating structure, a radiofrequency system, and an external port. The radiating structure comprises a first boosting element electrically connected to a first conductive element, a second boosting element electrically connected to a second conductive element, and a ground plane layer. The radiofrequency system comprises a first matching network connected to the first conductive element and the external port, and a second matching network connected to the second conductive element and a ground port. The first and second matching networks are configured to modify the impedance of the radiating structure providing impedance matching to the radiating system, at the external port, in the first and second frequency regions.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: September 15, 2020
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Aurora Andujar Linares
  • Patent number: 10763585
    Abstract: The present invention refers to an antenna less wireless handheld or portable device comprising a communication module including a radiating system capable of transmitting and receiving electromagnetic wave signals in a first frequency region and in a second frequency region, wherein the highest frequency of the first frequency region is lower than the lowest frequency of the second frequency region. The radiating system comprising a radiating structure and at least one internal port, wherein the input impedance of the radiating structure at the/each internal port when disconnected from the radiofrequency system has an imaginary part not equal to zero for any frequency of the first frequency region; and wherein said radiofrequency system modifies the impedance of the radiating structure, providing impedance matching to the radiating system in the at least two frequency regions of operation of the radiating system.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: September 1, 2020
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Aurora Andujar Linares, Carles Puente Baliarda, Josep Mumbru
  • Patent number: 10749246
    Abstract: A radiating system for transmitting and receiving signals in first and second frequency regions includes a radiating structure, a radiofrequency system, and an external port. The radiating structure has first and second isolated radiation boosters coupled to a ground plane layer. A first internal port of the radiating structure is between the first radiation booster and the ground plane layer, and a second internal port is between the second radiation booster and the ground plane layer. A distance between the two internal ports is less than 0.06 times a wavelength of the lowest frequency. The maximum size of the first and second radiation boosters is smaller than 1/30 times the wavelength of the lowest frequency. The radiofrequency system includes two ports connected respectively to the first and the second internal ports of the radiating structure, and a port connected to the external port of the radiating system.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: August 18, 2020
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Aurora Andujar Linares, Carles Puente Baliarda
  • Publication number: 20200259252
    Abstract: A device includes a radiating system comprising: at least one of a radiation booster or a radiating element; a ground plane layer having at least two connecting points; a radiofrequency system electrically connected to the radiation booster and/or the radiating element and comprising at least one matching network; at least one external port electrically connected to the radiofrequency system; and at least first and second electrically conductive elements each comprising one or more components and being adapted to electrically connect first and second connecting points, respectively, of the at least two connecting points to an electrically conductive body of an apparatus at a distance from the ground plane layer, the distance being less than ?/15, wherein ? is a free-space wavelength at a lowest frequency of operation of the radiating system.
    Type: Application
    Filed: April 29, 2020
    Publication date: August 13, 2020
    Inventors: Jaume ANGUERA, Aurora ANDÚJAR
  • Patent number: 10734724
    Abstract: A radiating system of a wireless device transmits and receives electromagnetic wave signals in a frequency region and comprises an external port, a radiating structure, and a radiofrequency system. The radiating structure includes: a ground plane layer with a connection point; a radiation booster with a connection point and being smaller than 1/30 of a free-space wavelength corresponding to a lowest frequency of the frequency region; and an internal port between the radiation booster connection point and the ground plane layer connection point. The radiofrequency system includes: a first port connected to the radiating structure's internal port; and a second port connected to the external port. An input impedance at radiating structure's disconnected internal port has a non-zero imaginary part across the frequency region. The radiofrequency system modifies impedance of the radiating structure to provide impedance matching to the radiating system within the frequency region at the external port.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: August 4, 2020
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Aurora Andujar Linares, Carles Puente Baliarda, Josep Mumbru
  • Patent number: 10734723
    Abstract: An antenna includes at least two radiating arm structures made of or limited by a conductor, superconductor or semiconductor material. The two arms are coupled through a region on first and second superconducting arms such that the combined structure forms a small antenna with broadband behavior, multiband behavior or a combination thereof. The coupling between the two radiating arms is obtained via the shape and spatial arrangement thereof, in which at least one portion on each arm is placed in close proximity to each other (e.g., at a distance smaller than 1/10 of the longest free-space operating wavelength) to allow electromagnetic fields in one arm to be transferred to the other through close proximity regions. The proximity regions are spaced from the feeding port of the antenna (e.g., greater than 1/40 of the free-space longest operating wavelength) and specifically exclude the feeding port of the antenna.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: August 4, 2020
    Assignee: Fractus, S. A.
    Inventors: Carles Puente Baliarda, Jaume Anguera Pros, Jordi Soler Castany, Antonio Condes Martinez
  • Patent number: 10734713
    Abstract: A wireless wearable device comprises a radiating system that contains at least a non-resonant element disposed in different arrangements within a radiating structure in the radiating system, featuring compact dimensions and an adequate performance when operating on a carrier living body.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: August 4, 2020
    Assignee: Fractus Antennas, S.L.
    Inventors: Jaume Anguera Pros, Aurora Andujar Linares
  • Publication number: 20200227830
    Abstract: A radiating system of a wireless device transmits and receives electromagnetic wave signals in a frequency region and comprises an external port, a radiating structure, and a radiofrequency system. The radiating structure includes: a ground plane layer with a connection point; a radiation booster with a connection point and being smaller than 1/30 of a free-space wavelength corresponding to a lowest frequency of the frequency region; and an internal port between the radiation booster connection point and the ground plane layer connection point. The radiofrequency system includes: a first port connected to the radiating structure's internal port; and a second port connected to the external port. An input impedance at radiating structure's disconnected internal port has a non-zero imaginary part across the frequency region. The radiofrequency system modifies impedance of the radiating structure to provide impedance matching to the radiating system within the frequency region at the external port.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 16, 2020
    Inventors: Jaume ANGUERA PROS, Aurora ANDUJAR LINARES, Carles PUENTE BALIARDA, Josep MUMBRU
  • Publication number: 20200176855
    Abstract: A wireless device comprises a radiating system that comprises: an antenna system, a ground plane, and a matching network. The antenna system comprises an antenna component including a first multi-section antenna component comprising two sections, each comprising a conductive element. The matching network connected to the antenna system for impedance matching to a first frequency range. The radiating system operates in a frequency range of operation including the first frequency range, the first frequency range comprising a first highest frequency and a first lowest frequency. The first antenna component has a maximum size larger than 1/30 times and smaller than ? times a free-space wavelength corresponding to the lowest frequency of operation. The conductive elements in the different sections of the first antenna component are spaced apart from each other.
    Type: Application
    Filed: December 31, 2019
    Publication date: June 4, 2020
    Inventors: Jaume ANGUERA, Aurora ANDUJAR, Carles PUENTE, Rosa E. MATEOS NAVARRO
  • Publication number: 20200144700
    Abstract: An apparatus comprises an antenna element operable in multiple frequency bands and configured to be connected to a ground plane and to a radiofrequency system to provide impedance matching at the multiple frequency bands, where the radiofrequency system comprising at least a matching network. A maximum length of the antenna element is shorter than L/12 but longer than L/22, where L is the free-space wavelength corresponding to a lowest frequency related to a lowest frequency region of operation of the antenna element. A contour of the antenna element has a complexity factor F12 less than 1.25.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: Aurora ANDUJAR LINARES, Jaume ANGUERA PROS, Carles PUENTE BALIARDA
  • Patent number: 10644405
    Abstract: The present invention relates to an integrated circuit package comprising at least one substrate, each substrate including at least one layer, at least one semiconductor die, at least one terminal, and an antenna located in the integrated circuit package, but not on said at least one semiconductor die. The conducting pattern comprises a curve having at least five sections or segments, at least three of the sections or segments being shorter than one-tenth of the longest free-space operating wavelength of the antenna, each of the five sections or segments forming a pair of angles with each adjacent segment or section, wherein the smaller angle of each of the four pairs of angles between sections or segments is less than 180° (i.e.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: May 5, 2020
    Assignee: Fractus, S.A.
    Inventors: Jordi Soler Castany, Jaume Anguera Pros, Carles Puente Baliarda, Carmen Borja Borau