Patents by Inventor Javier A. Sanguinetti

Javier A. Sanguinetti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230414359
    Abstract: A testing apparatus is disclosed herein for testing properties of a prosthetic device. The testing apparatus may comprise a dual-drive pulsatile flow tester with the ability to determine coaptation of valve leaflets of a prosthetic device. The testing apparatus may be able to test prosthetic heart valves and reproduce physiological conditions of a prosthetic heart valve.
    Type: Application
    Filed: September 12, 2023
    Publication date: December 28, 2023
    Inventors: Salvador Marquez, Lynn T. Dang, Javier A. Sanguinetti, Emily Cheng Zhou, Gary Alan Breitbach
  • Patent number: 11786374
    Abstract: A testing apparatus is disclosed herein for testing properties of a prosthetic device. The testing apparatus may comprise a dual-drive pulsatile flow tester with the ability to determine coaptation of valve leaflets of a prosthetic device. The testing apparatus may be able to test prosthetic heart valves and reproduce physiological conditions of a prosthetic heart valve.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: October 17, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Salvador Marquez, Lynn T. Dang, Javier A. Sanguinetti, Emily Cheng Zhou, Gary Alan Breitbach
  • Publication number: 20230068893
    Abstract: Sensor-integrated prosthetic valves that can comprise a variety of features, including a plurality of valve leaflets, a frame assembly configured to support the plurality of valve leaflets and define a plurality of commissure supports terminating at an outflow end of the prosthetic valve, a sensor device associated with the frame assembly and configured to generate a sensor signal, for example, a sensor signal indicating deflection of one or more of the plurality of commissure supports, and a transmitter assembly configured to receive the sensor signal from the sensor device and wirelessly transmit a transmission signal that is based at least in part on the sensor signal.
    Type: Application
    Filed: October 13, 2022
    Publication date: March 2, 2023
    Inventors: Salvador Marquez, Da-Yu Chang, Cindy Woo, Hao-Chung Yang, Lynn T. Dang, Javier A. Sanguinetti, Alexander H. Siemons, Yaron Keidar, Virginia Qi Lin, Brian S. Conklin, Donald E. Bobo, Jr.
  • Publication number: 20230016821
    Abstract: A tension-distribution device includes a rotationally-symmetric structure and two or more suture-engagement features associated with the rotationally-symmetric structure, the suture-engagement features being configured to receive one or more suture portions therein. The two or more suture-engagement features are evenly spaced rotationally about an axial center of the rotationally-symmetric structure.
    Type: Application
    Filed: September 26, 2022
    Publication date: January 19, 2023
    Inventors: Lynn T. Dang, Emily Cheng Zhou, Javier A. Sanguinetti, Hao-Chung Yang
  • Patent number: 11471275
    Abstract: Sensor-integrated prosthetic valves that can comprise a variety of features, including a plurality of valve leaflets, a frame assembly configured to support the plurality of valve leaflets and define a plurality of commissure supports terminating at an outflow end of the prosthetic valve, a sensor device associated with the frame assembly and configured to generate a sensor signal, for example, a sensor signal indicating deflection of one or more of the plurality of commissure supports, and a transmitter assembly configured to receive the sensor signal from the sensor device and wirelessly transmit a transmission signal that is based at least in part on the sensor signal.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: October 18, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Da-Yu Chang, Cindy Woo, Hao-Chung Yang, Lynn T. Dang, Javier A. Sanguinetti, Alexander H. Siemons, Yaron Keidar, Virginia Qi Lin, Brian S. Conklin, Donald E. Bobo, Jr.
  • Publication number: 20210401418
    Abstract: Disclosed herein are left atrial appendage (LAA) occluders that include self-powered physiological sensors to monitor physiological parameters of a subject. The sensors can be powered by harvesting energy generated by the patient's body or using wireless power delivery technologies. The disclosed devices can be used to close the LAA and to provide self-powering sensors to wirelessly monitor physiological parameters such as heart rate, pressure, temperature, size of the atrium, and levels of biomarkers such as C-reactive protein (CRP) and B-type natriuretic peptide (BNP) (e.g., using biosensors). In addition to addressing the stroke risk for patients with non-valvular atrial fibrillation, the disclosed devices offer post-surgical connected care that can reduce hospital readmissions, provide superior medical management, and improve patient quality of life.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Lynn T. Dang, Hao-Chung Yang, Javier A. Sanguinetti
  • Publication number: 20210137682
    Abstract: A testing apparatus is disclosed herein for testing properties of a prosthetic device. The testing apparatus may comprise a dual-drive pulsatile flow tester with the ability to determine coaptation of valve leaflets of a prosthetic device. The testing apparatus may be able to test prosthetic heart valves and reproduce physiological conditions of a prosthetic heart valve.
    Type: Application
    Filed: January 22, 2021
    Publication date: May 13, 2021
    Inventors: Salvador Marquez, Lynn T. Dang, Javier A. Sanguinetti, Emily Cheng Zhou, Gary Alan Breitbach
  • Patent number: 10898329
    Abstract: A testing apparatus is disclosed herein for testing properties of a prosthetic device. The testing apparatus may comprise a dual-drive pulsatile flow tester with the ability to determine coaptation of valve leaflets of a prosthetic device. The testing apparatus may be able to test prosthetic heart valves and reproduce physiological conditions of a prosthetic heart valve.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: January 26, 2021
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Lynn T. Dang, Javier A. Sanguinetti, Emily Cheng Zhou, Gary Alan Breitbach
  • Publication number: 20200289257
    Abstract: Sensor-integrated prosthetic valves that can comprise a variety of features, including a plurality of valve leaflets, a frame assembly configured to support the plurality of valve leaflets and define a plurality of commissure supports terminating at an outflow end of the prosthetic valve, a sensor device associated with the frame assembly and configured to generate a sensor signal, for example, a sensor signal indicating deflection of one or more of the plurality of commissure supports, and a transmitter assembly configured to receive the sensor signal from the sensor device and wirelessly transmit a transmission signal that is based at least in part on the sensor signal.
    Type: Application
    Filed: May 29, 2020
    Publication date: September 17, 2020
    Inventors: Salvador Marquez, Da-Yu Chang, Cindy Woo, Hao-Chung Yang, Lynn T. Dang, Javier A. Sanguinetti, Alexander H. Siemons, Yaron Keidar, Virginia Qi Lin, Brian S. Conklin, Donald E. Bobo, JR.
  • Publication number: 20200237515
    Abstract: A testing apparatus is disclosed herein for testing properties of a prosthetic device. The testing apparatus may comprise a dual-drive pulsatile flow tester with the ability to determine coaptation of valve leaflets of a prosthetic device. The testing apparatus may be able to test prosthetic heart valves and reproduce physiological conditions of a prosthetic heart valve.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 30, 2020
    Inventors: Salvador Marquez, Lynn T. Dang, Javier A. Sanguinetti, Emily Cheng Zhou, Gary Alan Breitbach
  • Patent number: 10667904
    Abstract: Sensor-integrated prosthetic valves that can comprise a variety of features, including a plurality of valve leaflets, a frame assembly configured to support the plurality of valve leaflets and define a plurality of commissure supports terminating at an outflow end of the prosthetic valve, a sensor device associated with the frame assembly and configured to generate a sensor signal, for example, a sensor signal indicating deflection of one or more of the plurality of commissure supports, and a transmitter assembly configured to receive the sensor signal from the sensor device and wirelessly transmit a transmission signal that is based at least in part on the sensor signal.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: June 2, 2020
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Da-Yu Chang, Cindy Woo, Hao-Chung Yang, Lynn T. Dang, Javier A. Sanguinetti, Alexander H. Siemons, Yaron Keidar, Virginia Qi Lin, Brian S. Conklin, Donald E. Bobo, Jr.
  • Publication number: 20170258585
    Abstract: Sensor-integrated prosthetic valves that can comprise a variety of features, including a plurality of valve leaflets, a frame assembly configured to support the plurality of valve leaflets and define a plurality of commissure supports terminating at an outflow end of the prosthetic valve, a sensor device associated with the frame assembly and configured to generate a sensor signal, for example, a sensor signal indicating deflection of one or more of the plurality of commissure supports, and a transmitter assembly configured to receive the sensor signal from the sensor device and wirelessly transmit a transmission signal that is based at least in part on the sensor signal.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 14, 2017
    Inventors: Salvador Marquez, Da-Yu Chang, Cindy Woo, Hao-Chung Yang, Lynn T. Dang, Javier A. Sanguinetti, Alexander H. Siemons, Yaron Keidar, Virginia Qi Lin, Brian S. Conklin, Donald E. Bobo, JR.