Patents by Inventor Javier Asensio Pérez Ullivarri

Javier Asensio Pérez Ullivarri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9746418
    Abstract: The invention relates to a portable reflectometer and to a method for characterizing the collector mirrors used in solar power plants for the in-field characterization of reflection coefficients. The equipment includes all of the components required for this measurement, such as a module to measure the reflection coefficient of the mirror, an electronic data acquisition and processing system, a system for processing data and controlling the equipment, a system for storing the data of interest, a user interface system, and a system allowing communication between the aforementioned systems and an outer casing. The equipment can be used to characterize the specular reflection coefficient of flat or curved mirrors of different thicknesses, without requiring adjustments to be made to the equipment, minimizing the influence of diffuse reflection on the measurement.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: August 29, 2017
    Assignee: Abengoa Solar New Technologies, S.A.
    Inventors: Marta Mainar López, David Izquierdo Núñez, Iñigo Salinas Áriz, Carlos Heras Vila, Rafael Alonso Esteban, Francisco Villuendas Yuste, Ana Margarita Lopéz de Lama, Javier Asensio Pérez-Ullivarri
  • Patent number: 9255724
    Abstract: System for supporting an evaporable getter, which can be installed in any type of solar power receiving tube and which is mounted using an automated method. The system consists of a clip-type supporting element having a substantially thin profile and an S-shaped base, the upper part thereof including a ring in which the pellet of evaporable getter is housed. The pellet is supported by the pins of the supporting element, dispensing with the need for an additional contact part in order to secure the pellet. The clip is secured to the bellows-type expansion compensator, such that it remains inside the vacuum zone of the solar power receiving tube.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: February 9, 2016
    Assignee: Abengoa Solar New Technologies, S.A.
    Inventors: Noelia Martínez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, Javier Peláez Fombellida, José Ángel Rico Sánchez, Daniel Montes García
  • Patent number: 9249991
    Abstract: Insulating element for expansion compensation device and method for manufacture thereof, of the type used in solar energy collector absorber tubes, being formed by a single piece in the form of a ring and with a bellows-like end portion, which is filled with rock wool or other equivalent insulating material, so as to create a hot air chamber which minimizes heat losses.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: February 2, 2016
    Assignee: Abengoa Solar New Technologies, S.A.
    Inventors: Noelia Martínez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, José Ángel Rico Sánchez
  • Patent number: 9032625
    Abstract: The invention relates to a method for producing a solar power receiving tube and to the resulting tube, which is of the type that includes: an outer glass tube, an inner metal absorber through which a heat-transfer fluid flows, and an intermediate area in which the vacuum is produced. The method comprises the following steps: i. Production of the metal tubes ii. Production of the glass tubes: namely a longer central glass tube and two shorter glass tubes for the ends. iii. Process for the production of the Kovar rings or glass-metal transition elements iv. Process for the welding of the Kovar rings to the tubes v. Process for the production of the bellows or expansion compensating devices assemblies vi. Assembly of the products obtained in the preceding operations vii. Creation of the vacuum and anodising of the welds.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: May 19, 2015
    Assignee: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.
    Inventors: Noelia Martínez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, Javier Peláez Fombellida, José Ángel Rico Sánchez
  • Patent number: 8607780
    Abstract: New expansion compensating device and manufacturing method of the same, of those used in solar power absorber tubes featuring a dual bellows design where the height of the waves of the bellows is not regular, but the second wave is greater (where it supports more load) and diminishes towards the ends. With this design improving the performance of the receiver is achieved because it shortens the length of the device and consequently there is more surface area receiving solar radiation as well as it decreases the necessary diameter of glass tube and therefore its cost.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: December 17, 2013
    Assignee: Abengoa Solar New Technologies, S.A.
    Inventors: Noelia Martínez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, Javier Peláez Fombellida, José Ángel Rico Sánchez, Miguel Ángel Girona Montarroso
  • Publication number: 20130169950
    Abstract: The invention relates to a portable reflectometer and to a method for characterizing the collector mirrors used in solar power plants for the in-field characterization of reflection coefficients. The equipment includes all of the components required for this measurement, such as a module to measure the reflection coefficient of the mirror, an electronic data acquisition and processing system, a system for processing data and controlling the equipment, a system for storing the data of interest, a user interface system, and a system allowing communication between the aforementioned systems and an outer casing. The equipment can be used to characterize the specular reflection coefficient of flat or curved mirrors of different thicknesses, without requiring adjustments to be made to the equipment, minimizing the influence of diffuse reflection on the measurement.
    Type: Application
    Filed: July 20, 2011
    Publication date: July 4, 2013
    Applicant: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.
    Inventors: Marta Mainar López, David Izquierdo Núñez, Iñigo Salinas Áriz, Carlos Heras Vila, Rafael Alonso Esteban, Javier Asensio Pérez-Ullivarri, Ana Margarita Lopéz de Lama
  • Publication number: 20120299289
    Abstract: New expansion compensating device and manufacturing method of the same, of those used in solar power absorber tubes featuring a dual bellows design where the height of the waves of the bellows is not regular, but the second wave is greater (where it supports more load) and diminishes towards the ends. With this design improving the performance of the receiver is achieved because it shortens the length of the device and consequently there is more surface area receiving solar radiation as well as it decreases the necessary diameter of glass tube and therefore its cost.
    Type: Application
    Filed: November 11, 2010
    Publication date: November 29, 2012
    Inventors: Noelia Martinez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, Javier Peláez Fombellida, José Ángel Rico Sánchez, Miguel Ángel Girona Montarroso
  • Publication number: 20120272950
    Abstract: Insulating element for expansion compensation device and method for manufacture thereof, of the type used in solar energy collector absorber tubes, being formed by a single piece in the form of a ring and with a bellows-like end portion, which is filled with rock wool or other equivalent insulating material, so as to create a hot air chamber which minimizes heat losses.
    Type: Application
    Filed: November 11, 2010
    Publication date: November 1, 2012
    Applicant: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.
    Inventors: Noelia Martínez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, José Ángel Rico Sánchez
  • Publication number: 20120247456
    Abstract: The invention relates to a method for producing a solar power receiving tube and to the resulting tube, which is of the type that includes: an outer glass tube, an inner metal absorber through which a heat-transfer fluid flows, and an intermediate area in which the vacuum is produced. The method comprises the following steps: i. Production of the metal tubes ii. Production of the glass tubes: namely a longer central glass tube and two shorter glass tubes for the ends. iii. Process for the production of the Kovar rings or glass-metal transition elements iv. Process for the welding of the Kovar rings to the tubes v. Process for the production of the bellows or expansion compensating devices assemblies vi. Assembly of the products obtained in the preceding operations vii.
    Type: Application
    Filed: October 4, 2010
    Publication date: October 4, 2012
    Applicant: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.
    Inventors: Noelia Martínez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, Javier Peláez Fombellida, José Ángel Rico Sánchez
  • Publication number: 20120251336
    Abstract: Vacuum enhancing system or non-evaporable getter of the type used en solar-receptor vacuum tubes which comprises a series of non-evaporable getter material pads the geometry of which is that of a prism with rounded corners and said pads are drilled through the centre thereof and linked by means of a cable ending in a quick-fit closure that allows the fitting thereof to be automated. This system is placed downstream of the expansion-compensating device in the form of non-radial bellows in the longitudinal direction and in the void defined by the vessel that is the interface part between the absorber tube and the expansion-compensating device. A getter system is placed in a radial arrangement, at each of the two ends of the receptor tube, resulting in a receptor tube of completely symmetrical geometry.
    Type: Application
    Filed: October 4, 2010
    Publication date: October 4, 2012
    Applicant: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.
    Inventors: Noelia Martínez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, Javier Peláez Fombellida, José Ángel Rico Sánchez, Daniel Cristóbal Ramírez
  • Publication number: 20120241575
    Abstract: System for supporting an evaporable getter, which can be installed in any type of solar power receiving tube and which is mounted using a method that is much more automated than that used until now. Unlike the known prior art, this system consists of a clip-type supporting element having a substantially thin profile and an S-shaped base, the upper part thereof including a ring in which the pellet of evaporable getter is housed. Said pellet is supported by the pins of the supporting element, dispensing with the need for an additional contact part in order to secure the pellet. The clip is secured to the bellows-type expansion compensator, such that it remains inside the vacuum zone of the solar power receiving tube.
    Type: Application
    Filed: October 4, 2010
    Publication date: September 27, 2012
    Applicant: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.
    Inventors: Noelia Martínez Sanz, Javier Asensio Pérez Ullivarri, Pablo José Bombin Ortega, Javier Peláez Fombellida, José Àngel Rico Sánchez, Daniel Montes García
  • Publication number: 20120096859
    Abstract: Air- and steam-technology combined solar plant for use in the fields of electricity production, process heat, and solar fuels, as well as thermo-chemical processes, produced from the combination of a non-pressurised-air solar receptor, a saturated-steam solar receptor and a heat exchanger separate from the solar input that is used to produce overheated steam.
    Type: Application
    Filed: March 18, 2010
    Publication date: April 26, 2012
    Applicant: ABENGOA SOLAR NEW TECHNOLOGIES, S.A.
    Inventors: Raúl Navio Gilaberte, Lucia Serrano Gallar, Paula Llorenter Folch, Noelia Martinez Sanz, Sandra Alvarez De Miguel, Javier Asensio Perez-Ullivarri