Patents by Inventor Javier CALPE

Javier CALPE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111055
    Abstract: There is provided continuous wave time of flight, CW-ToF, camera system comprising: one or more lasers for outputting laser light; one or more imaging sensors, the one or more image sensors each comprising a plurality of imaging pixels for accumulating charge based on incident light comprising reflected laser light off a first surface of an object; and a distance determination system coupled to the one or more imaging sensors and configured to: acquire a first set of charge samples from the one or more imaging sensors in respect of the object by: a) driving the one or more lasers to output laser light modulated with a first modulation signal, wherein the first modulation signal has a first frequency; and b) after step a, reading out image sensor values indicative of charge accumulated by at least some of the plurality of imaging pixels of the one or more imaging sensors; acquire a second set of charge samples from the one or more imaging sensors in respect of the object by: c) driving the one or more lasers t
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Javier CALPE-MARAVILLA, Filiberto Pla, Jonathan Hurwitz, Nicolas Le Dortz
  • Patent number: 11940502
    Abstract: Aspects of this disclosure relate to one or more particles that move within a container in response to a magnetic field. A measurement circuit is configured to output an indication of the magnetic field based on position of the one or more particles.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: March 26, 2024
    Assignee: Analog Devices International Unlimited Company
    Inventors: Alan J. O'Donnell, Javier Calpe Maravilla, Alfonso Berduque, Shaun Bradley, Jochen Schmitt, Jan Kubík, Stanislav Jolondcovschi, Padraig L Fitzgerald, Eoin Edward English, Gavin Patrick Cosgrave, Michael P. Lynch
  • Publication number: 20240085500
    Abstract: Aspects of this disclosure relate to particles that can move in response to a magnetic field. A system can include a container, particles within the container, and a magnetic structure integrated with the container. The magnetic structure can magnetically interact with both an external magnetic field and the particles. Related methods are disclosed including magnetic field detection methods based on detection of particles within a container.
    Type: Application
    Filed: September 6, 2023
    Publication date: March 14, 2024
    Inventors: Alan J. O'Donnell, Javier Calpe Maravilla, Shaun Bradley, Jan Kubík, Jochen Schmitt, Stanislav Jolondcovschi, Padraig L. Fitzgerald, Michael P. Lynch, Alfonso Berduque, Gavin Patrick Cosgrave, Eoin Edward English
  • Publication number: 20240044726
    Abstract: Aspects of this disclosure relate to force based on movement of magnetically sensitive material. In embodiments, first magnetically sensitive material and second magnetically sensitive material can be in an initial position. According to such embodiments, one or more sensors to detect force based on relative position of the first magnetically sensitive material and the second magnetically sensitive in a second position. Related systems and methods for force detection are disclosed.
    Type: Application
    Filed: August 2, 2023
    Publication date: February 8, 2024
    Inventors: Alan J. O'Donnell, Javier Calpe Maravilla, Jan Kubík, Jochen Schmitt, Shaun Bradley, Stanislav Jolondcovschi, Padraig L. Fitzgerald, Alfonso Berduque, Gavin Patrick Cosgrave, Michael P. Lynch, Eoin Edward English
  • Publication number: 20240044725
    Abstract: Aspects of this disclosure relate to force based on a profile of magnetically sensitive material in a container. One or more sensors can detect the profile of the magnetically sensitive material, where the profile is associated with a force applied to the container. The profile includes magnetically sensitive material concentrated in one or more particular areas within the container. Related systems and methods for force detection are disclosed.
    Type: Application
    Filed: August 2, 2023
    Publication date: February 8, 2024
    Inventors: Alan J. O'Donnell, Javier Calpe Maravilla, Jan Kubík, Jochen Schmitt, Shaun Bradley, Stanislav Jolondcovschi, Padraig L. Fitzgerald, Alfonso Berduque, Gavin Patrick Cosgrave, Michael P. Lynch, Eoin Edward English
  • Publication number: 20240003755
    Abstract: Aspects of the present disclosure include using particles in phase change materials to track temperature change of an object. The particles may be initially disposed at specific locations within the phase change materials. As the phase change materials transition from the solid state to the fluid state, the particles may move from the initial locations to different locations. The change in locations of the particles may be detected magnetically, electrically, optically, and/or visually. Such change may indicate that the object experienced a temperate above at least one phase transition temperature of the phase change materials.
    Type: Application
    Filed: June 28, 2023
    Publication date: January 4, 2024
    Inventors: Alan O'DONNELL, Shaun Stephen BRADLEY, Michael P. LYNCH, Padraig L. FITZGERALD, Jochen SCHMITT, Jan KUBIK, Javier CALPE, Michael J. CLIFFORD, Stanislav JOLONDCOVSCHI, Gavin P. COSGRAVE, Alfonso BERDUQUE
  • Publication number: 20240003756
    Abstract: Aspects of the present disclosure include using particles in phase change materials to track temperature change of an object. The particles may be initially disposed at specific locations within the phase change materials. As the phase change materials transition from the solid state to the fluid state, the particles may move from the initial locations to different locations. The change in locations of the particles may be detected magnetically, electrically, optically, and/or visually. Such change may indicate that the object experienced a temperate above at least one phase transition temperature of the phase change materials.
    Type: Application
    Filed: June 28, 2023
    Publication date: January 4, 2024
    Inventors: Alan O'DONNELL, Michael P. LYNCH, Jochen SCHMITT, Jan KUBIK, Padraig L. FITZGERALD, Javier CALPE, Stanislav JOLONDCOVSCHI, Shaun Stephen BRADLEY, Michael J. CLIFFORD, Gavin P. COSGRAVE, Alfonso BERDUQUE
  • Publication number: 20240003753
    Abstract: Aspects of the present disclosure include using particles in phase change materials to track temperature change of an object. The particles may be initially disposed at specific locations within the phase change materials. As the phase change materials transition from the solid state to the fluid state, the particles may move from the initial locations to different locations. The change in locations of the particles may be detected magnetically, electrically, optically, and/or visually. Such change may indicate that the object experienced a temperate above at least one phase transition temperature of the phase change materials.
    Type: Application
    Filed: June 28, 2023
    Publication date: January 4, 2024
    Inventors: Alan O'DONNELL, Gavin Cosgrave, Michael J. Clifford, Michael P. Lynch, Jochen Schmitt, Jan Kubik, Javier Calpe, Shaun Stephen Bradley, Stanislav Jolondcovschi, Padraig L. Fitzgerald, Alfonso Berduque
  • Publication number: 20240003752
    Abstract: Aspects of the present disclosure include using particles in phase change materials to track temperature change of an object. The particles may be initially disposed at specific locations within the phase change materials. As the phase change materials transition from the solid state to the fluid state, the particles may move from the initial locations to different locations. The change in locations of the particles may be detected magnetically, electrically, optically, and/or visually. Such change may indicate that the object experienced a temperate above at least one phase transition temperature of the phase change materials.
    Type: Application
    Filed: June 28, 2023
    Publication date: January 4, 2024
    Inventors: Alan ODONNELL, Jochen SCHMITT, Jan KUBIK, Javier CALPE, Gavin COSGRAVE, Shaun Stephen BRADLEY, Stanislav JOLONDCOVSCHI, Michael P. LYNCH, Michael J. CLIFFORD, Padraig L. FITZGERALD, Alfonso BERDUQUE
  • Publication number: 20240003754
    Abstract: Aspects of the present disclosure include using particles in phase change materials to track temperature change of an object. The particles may be initially disposed at specific locations within the phase change materials. As the phase change materials transition from the solid state to the fluid state, the particles may move from the initial locations to different locations. The change in locations of the particles may be detected magnetically, electrically, optically, and/or visually. Such change may indicate that the object experienced a temperate above at least one phase transition temperature of the phase change materials.
    Type: Application
    Filed: June 28, 2023
    Publication date: January 4, 2024
    Inventors: Alan O'Donnell, Michael J. Clifford, Alfonso Berduque, Michael P. Lynch, Jochen Schmitt, Jan Kubik, Javier Calpe, Shaun Stephen Bradley, Stanislav Jolondcovschi, Gavin P. Cosgrave, Padraig L. Fitzgerald
  • Publication number: 20230383855
    Abstract: Aspects of this disclosure relate to adjusting fluid flow using magnetically sensitive particles. Fluid can flow through an opening in a container. Magnetically sensitive particles can be confined within the container. A magnetic field can be applied to move the magnetically sensitive particles in the container to adjust flow of the fluid through the opening.
    Type: Application
    Filed: May 25, 2023
    Publication date: November 30, 2023
    Inventors: Alan J. O'Donnell, Jan Kubík, Alfonso Berduque, Jochen Schmitt, Javier Calpe Maravilla, Shaun Bradley, Padraig L. Fitzgerald, Stanislav Jolondcovschi, Gavin Patrick Cosgrave, Michael P. Lynch, Eoin Edward English
  • Publication number: 20230349987
    Abstract: Aspects of this disclosure relate to generating measurements based on positions of particles within one or more compartments. At least some of the particles can move in response to an external stimulus. A comparative measurement can be provided based on comparing the measurements. The measurements can be associated with two or more types of particles and/or two or more compartments.
    Type: Application
    Filed: April 12, 2023
    Publication date: November 2, 2023
    Inventors: Alan J. O’Donnell, Shaun Bradley, Alfonso Berduque, Jan Kubík, Jochen Schmitt, Stanislav Jolondcovschi, Javier Calpe Maravilla, Padraig L. Fitzgerald, Gavin Patrick Cosgrave, Michael P. Lynch, Eoin Edward English
  • Publication number: 20230309895
    Abstract: A method for reconstructing 12-lead standard electrocardiogram (ECG) system signals using an M lead system, the method comprising recording signals acquired by the 12-lead standard ECG system; recording signals acquired by the M-lead system; and using the recorded signals to train a machine learning model to produce the reconstructed 12-lead standard ECG system signals using the M-lead system.
    Type: Application
    Filed: August 19, 2021
    Publication date: October 5, 2023
    Inventors: Alejandro GRANDE, Javier CALPE MARAVILLA, Monica REDON SEGRERA, Venugopal GOPINATHAN, Tony AKL
  • Publication number: 20230264198
    Abstract: Aspects of this disclosure relate to systems that include a channel with at least one fluid in particle in fluid. The at least one particle can move along a defined path of the channel in response to a magnetic field. At least one structure is integrated with the channel, such as a sensor to generate an output signal related to the magnetic field or a magnetic structure to apply the magnetic field. Relates methods are also disclosed.
    Type: Application
    Filed: February 17, 2023
    Publication date: August 24, 2023
    Inventors: Alan J. O'Donnell, Jan Kubík, Jochen Schmitt, Stanislav Jolondcovschi, Shaun Bradley, Gavin Patrick Cosgrave, Alfonso Berduque, Javier Calpe Maravilla, Padraig L. Fitzgerald, Eoin Edward English, Michael P. Lynch
  • Publication number: 20230260094
    Abstract: A depth estimation system can use a guided filter to enhance depth estimation using brightness image. Light is projected onto an object. The object reflects at least a portion of the projected light. The reflected light is at least partially captured by an image sensor. The depth estimation system may generate a depth image based on a phase shift between the captured light and the projected light and generate a brightness image based on brightness of the captured light. The depth estimation system may use the guided filter to identify a pixel that represents at least a portion of a boundary of the object. The guided filter can determine a depth value of the pixel based on the value of the corresponding pixel in the brightness image. The depth estimation system can assign the depth value to the pixel and generates an enhanced depth image.
    Type: Application
    Filed: August 18, 2022
    Publication date: August 17, 2023
    Applicant: Analog Devices International Unlimited Company
    Inventors: Kevin Joseph MCANDREW, Krystian BALICKI, Charles MATHY, Nicolas LE DORTZ, Jonathan Ephraim David HURWITZ, Eoin E. ENGLISH, Javier CALPE MARAVILLA
  • Publication number: 20230260143
    Abstract: A depth estimation system can use an image energy model to enhance depth estimation using brightness image. Light is projected onto an object. The object reflects at least a portion of the projected light. The reflected light is at least partially captured by an image sensor. The depth estimation system may generate a depth image based on a phase shift between the captured light and the projected light and generate a brightness image based on brightness of the captured light. The depth estimation system may determine a fusion energy based on the depth image and the brightness image and minimize the fusion energy to determine a new depth value of a pixel. The depth estimation system can assign the new depth value to the pixel and generates an enhanced depth image. The enhanced depth image includes better depth estimation than the original depth image.
    Type: Application
    Filed: July 18, 2022
    Publication date: August 17, 2023
    Applicant: Analog Devices International Unlimited Company
    Inventors: Amina Achaibou, Filiberto Pla Bañón, Javier Calpe Maravilla
  • Patent number: 11664753
    Abstract: Systems and methods for extracting motor operational state parameters from an electric motor for improved motor control and motor fault or failure detection are discussed. An exemplary system includes an excitation circuit to apply a drive voltage to an electric motor, and a processor circuit to measure a resulting winding current, extract a current waveform by oversampling the winding current in an entire PWM frame at a sampling rate higher than the PWM frequency, and fit the current waveform in the PWM period to a parametric model. The processor circuit can determine a motor operational state parameter using one or more of the applied drive voltage or the parametric model of the winding current.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: May 30, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Adam James Glibbery, Javier Calpe Maravilla
  • Publication number: 20230152166
    Abstract: Aspects of this disclosure relate to detecting temperature based on movement of one or more particles within a container. The container includes a medium material. Mobility of the one or more particles in the medium material changes in response to a change in temperature.
    Type: Application
    Filed: November 8, 2022
    Publication date: May 18, 2023
    Inventors: Alan J. O'Donnell, Alfonso Berduque, Javier Calpe Maravilla, Shaun Bradley, Padraig L. Fitzgerald, Jan Kubík, Stanislav Jolondcovschi, Jochen Schmitt, Gavin Patrick Cosgrave, Eoin Edward English, Michael P. Lynch
  • Patent number: 11649157
    Abstract: A magnetic device may include a magnetic structure, a device structure, and an associated circuit. The magnetic structure may include a patterned layer of material having a predetermined magnetic property. The patterned layer may be configured to, e.g., provide a magnetic field, sense a magnetic field, channel or concentrate magnetic flux, shield a component from a magnetic field, or provide magnetically actuated motion, etc. The device structure may be another structure of the device that is physically connected to or arranged relative to the magnetic structure to, e.g., structurally support, enable operation of, or otherwise incorporate the magnetic structure into the magnetic device, etc. The associated circuit may be electrically connected to the magnetic structure to receive, provide, condition or process of signals of the magnetic device.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: May 16, 2023
    Assignee: Analog Devices International Unlimited Company
    Inventors: Alan J. O'Donnell, Robert Guyol, Maria Jose Martinez, Jan Kubik, Padraig L. Fitzgerald, Javier Calpe Maravilla, Michael P. Lynch, Eoin E. English
  • Publication number: 20230098962
    Abstract: Aspects of this disclosure relate to one or more particles that move within a container in response to a magnetic field. A measurement circuit is configured to output an indication of the magnetic field based on position of the one or more particles.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 30, 2023
    Inventors: Alan J. O'Donnell, Javier Calpe Maravilla, Alfonso Berduque, Shaun Bradley, Jochen Schmitt, Jan Kubík, Stanislav Jolondcovschi, Padraig L. Fitzgerald, Eoin Edward English, Gavin Patrick Cosgrave, Michael P. Lynch