Patents by Inventor Jawad Naciri

Jawad Naciri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11920035
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: March 5, 2024
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Patent number: 11618821
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: April 4, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Patent number: 11608409
    Abstract: An interpenetrating network (IPN) polymer membrane material includes a soft polyurethane interspersed with a crosslinked conducting polymer. The material can be reversibly “switched” between its oxidized and reduced states by the application of a small voltage, ˜1 to 4 volts, thus modulating its diffusivity.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: March 21, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Jawad Naciri, Banahalli R. Ratna
  • Patent number: 11609479
    Abstract: A liquid crystal (LC) beam steerer includes a waveguide apparatus with a waveguide having a high-index core in contact with a variable-index liquid crystal (LC) cladding, wherein a voltage applied to the LC cladding is effective to steer a beam of light passing through the high-index core. Measuring the bulk birefringence and/or the capacitance characteristics of the LC can facilitate beam steering.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: March 21, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jakub Kolacz, Henry G. Gotjen, Christopher M. Spillmann, Jawad Naciri, Jason D. Myers, Jesse A. Frantz, Robel Y. Bekele
  • Publication number: 20230054994
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Application
    Filed: October 25, 2022
    Publication date: February 23, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Patent number: 11584826
    Abstract: An interpenetrating network (IPN) polymer membrane material includes a soft polyurethane interspersed with a crosslinked conducting polymer. The material can be reversibly “switched” between its oxidized and reduced states by the application of a small voltage, ˜1 to 4 volts, thus modulating its diffusivity.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: February 21, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Jawad Naciri, Banahalli R. Ratna
  • Patent number: 11406997
    Abstract: An apparatus having: a vessel for containing a suspension of a liquid and solid particles; a tube having a narrowed portion to draw the suspension from the vessel into the tube when a gas flows through the tube; an aerosol generator coupled to the tube for forming an aerosol from the suspension; a dehydrator coupled to the aerosol generator for removing the liquid from the aerosol forming a dried aerosol; a multiple-pass spectroscopic absorption cell coupled to the dehydrator to pass the dried aerosol into the absorption cell; and a Fourier transform spectrometer coupled to the absorption cell to measure an absorption spectrum of the dried aerosol.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: August 9, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jake Fontana, Jawad Naciri
  • Publication number: 20220213261
    Abstract: An interpenetrating network (IPN) polymer membrane material includes a soft polyurethane interspersed with a crosslinked conducting polymer. The material can be reversibly “switched” between its oxidized and reduced states by the application of a small voltage, ˜1 to 4 volts, thus modulating its diffusivity.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Inventors: Brett D. Martin, Jawad Naciri, Banahalli R. Ratna
  • Publication number: 20220213262
    Abstract: An interpenetrating network (IPN) polymer membrane material includes a soft polyurethane interspersed with a crosslinked conducting polymer. The material can be reversibly “switched” between its oxidized and reduced states by the application of a small voltage, ˜1 to 4 volts, thus modulating its diffusivity.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 7, 2022
    Inventors: Brett D. Martin, Jawad Naciri, Banahalli R. Ratna
  • Patent number: 11299582
    Abstract: An interpenetrating network (IPN) polymer membrane material includes a soft polyurethane interspersed with a crosslinked conducting polymer. The material can be reversibly “switched” between its oxidized and reduced states by the application of a small voltage, ˜1 to 4 volts, thus modulating its diffusivity.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: April 12, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Jawad Naciri, Banahalli R. Ratna
  • Patent number: 11163207
    Abstract: A liquid crystal-based non-mechanical beam steering device that permits steering in the mid-wave infrared and has a chalcogenide waveguide. The waveguide core, the subcladding, or both comprise a chalcogenide glass. The liquid crystal-based non-mechanical beam steering device has a tapered subcladding and a liquid crystal layer.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 2, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Robel Y. Bekele, Christopher M. Spillmann, Jawad Naciri, Jakub Kolacz, Henry G. Gotjen, Jason Auxier, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20210286231
    Abstract: A liquid crystal (LC) beam steerer includes a waveguide apparatus with a waveguide having a high-index core in contact with a variable-index liquid crystal (LC) cladding, wherein a voltage applied to the LC cladding is effective to steer a beam of light passing through the high-index core. Measuring the bulk birefringence and/or the capacitance characteristics of the LC can facilitate beam steering.
    Type: Application
    Filed: September 29, 2020
    Publication date: September 16, 2021
    Inventors: Jakub Kolacz, Henry G. Gotjen, Christopher M. Spillmann, Jawad Naciri, Jason D. Myers, Jesse A. Frantz, Robel Y. Bekele
  • Patent number: 11028053
    Abstract: An electrically conducting organic oligomer made from the steps of preparing an acidic aqueous solution with a monomer; preparing the acidic aqueous solution by mixing a solution of about 1.6 wt % HCl in DI water with a monomer; forming about a 0.3 M solution preparing a second aqueous solution with a sodium persulfate oxidant; mixing the acidic aqueous solution with the second aqueous solution; and allowing a reaction to proceed at about 40° C.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: June 8, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Scott A. Trammell, Jeffrey R. Deschamps, Jawad Naciri, Jeffrey C. DePriest
  • Patent number: 11028265
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: June 8, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Publication number: 20210070998
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Application
    Filed: November 18, 2020
    Publication date: March 11, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Patent number: 10915004
    Abstract: An optical system has a beam-steering device, a light source, and a controller that controls the light source to actively control wavelength of the incoming light to control the output angle of the outgoing light output from the BS device. The BS device may have incoupler, waveguide, and/or outcoupler electrodes, and the system may have corresponding controllable voltage supplies actively controlled by the controller to selectively modify electric fields applied to the BS device to control corresponding operating characteristics of the BS device (e.g., in-plane and/or out-of-plane output angles of the outgoing light and/or device incoupling angle). An alternative optical system has a BS device, a detector array that generates detector signals corresponding to outgoing light received from the BS device, and a controller that processes the detector signals to determine one or more wavelengths of the outgoing light.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: February 9, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jason D. Myers, Jesse A. Frantz, Christopher M. Spillmann, Robel Y. Bekele, Henry G. Gotjen, Jawad Naciri, Jakub Kolacz, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20200399537
    Abstract: Liquid crystal molecules are described with desirably reduced attenuation in portions of the long-wave infrared (LWIR) spectrum. The molecules include a linear hydrocarbon of varying length (CnH2n+1, where n, for example, is from 4-7), a deuterated phenyl core comprising 2 or 3 rings, and one terminal cyano group. These enable electro-optic such as light modulators, phased arrays, polarization gratings, refractive steerers, and the like, operable at LWIR.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 24, 2020
    Inventors: Jawad Naciri, Christopher M. Spillmann, Jakub Kolacz, Henry G. Gotjen, Jason D. Myers, Jesse A. Frantz, Robel Y. Bekele
  • Publication number: 20200339742
    Abstract: An interpenetrating network (IPN) polymer membrane material includes a soft polyurethane interspersed with a crosslinked conducting polymer. The material can be reversibly “switched” between its oxidized and reduced states by the application of a small voltage, ˜1 to 4 volts, thus modulating its diffusivity.
    Type: Application
    Filed: April 28, 2020
    Publication date: October 29, 2020
    Inventors: Brett D. Martin, Jawad Naciri, Banahalli R. Ratna
  • Publication number: 20200292911
    Abstract: A liquid crystal-based non-mechanical beam steering device that permits steering in the mid-wave infrared and has a chalcogenide waveguide. The waveguide core, the subcladding, or both comprise a chalcogenide glass. The liquid crystal-based non-mechanical beam steering device has a tapered subcladding and a liquid crystal layer.
    Type: Application
    Filed: May 22, 2020
    Publication date: September 17, 2020
    Inventors: Jesse A. Frantz, Jason D. Myers, Robel Y. Bekele, Christopher M. Spillmann, Jawad Naciri, Jakub Kolacz, Henry G. Gotjen, Jason Auxier, Leslie Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20200261939
    Abstract: An apparatus having: a vessel for containing a suspension of a liquid and solid particles; a tube having a narrowed portion to draw the suspension from the vessel into the tube when a gas flows through the tube; an aerosol generator coupled to the tube for forming an aerosol from the suspension; a dehydrator coupled to the aerosol generator for removing the liquid from the aerosol forming a dried aerosol; a multiple-pass spectroscopic absorption cell coupled to the dehydrator to pass the dried aerosol into the absorption cell; and a Fourier transform spectrometer coupled to the absorption cell to measure an absorption spectrum of the dried aerosol.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 20, 2020
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jake Fontana, Jawad Naciri