Patents by Inventor Jawahar M. Desai
Jawahar M. Desai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10709501Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.Type: GrantFiled: January 30, 2019Date of Patent: July 14, 2020Assignee: Sirona Medical Technologies, Inc.Inventor: Jawahar M. Desai
-
Patent number: 10709499Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.Type: GrantFiled: July 27, 2017Date of Patent: July 14, 2020Assignee: Sirona Medical Technologies, Inc.Inventor: Jawahar M. Desai
-
Publication number: 20190159836Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.Type: ApplicationFiled: January 30, 2019Publication date: May 30, 2019Inventor: Jawahar M. Desai
-
Publication number: 20170319274Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.Type: ApplicationFiled: July 27, 2017Publication date: November 9, 2017Inventor: Jawahar M. Desai
-
Patent number: 9717558Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.Type: GrantFiled: November 7, 2014Date of Patent: August 1, 2017Assignee: Sirona Medical Technologies, Inc.Inventor: Jawahar M. Desai
-
Publication number: 20150066017Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.Type: ApplicationFiled: November 7, 2014Publication date: March 5, 2015Inventor: Jawahar M. Desai
-
Patent number: 8882761Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.Type: GrantFiled: July 15, 2008Date of Patent: November 11, 2014Assignee: Catheffects, Inc.Inventor: Jawahar M. Desai
-
Patent number: 8457721Abstract: Cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also includes a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.Type: GrantFiled: October 31, 2011Date of Patent: June 4, 2013Assignee: CathEffects, Inc.Inventor: Jawahar M. Desai
-
Publication number: 20120108957Abstract: Cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also includes a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.Type: ApplicationFiled: October 31, 2011Publication date: May 3, 2012Applicant: CathEffects, Inc.Inventor: Jawahar M. Desai
-
Patent number: 8050732Abstract: A system and method for cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also include a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.Type: GrantFiled: April 19, 2010Date of Patent: November 1, 2011Assignee: Catheffects, Inc.Inventor: Jawahar M. Desai
-
Publication number: 20100204598Abstract: A system and method for cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also include a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.Type: ApplicationFiled: April 19, 2010Publication date: August 12, 2010Applicant: CathEffects, Inc.Inventor: Jawahar M. Desai
-
Publication number: 20100016848Abstract: An ablation electrode is mounted on the distal end of a catheter with a first portion inside and a second portion outside the catheter. The second portion is adapted to have a surface that makes maximum contact with a tissue to be ablated, leaving a minimum area not covered by the tissue and potentially exposed to blood. The first portion is adapted to provide an extended surface area for efficient exchange of heat with a coolant flowing inside the catheter. Outlets provided near the area not covered by the tissue in the second portion prevents blood from getting close to or come directly in contact with the area, thereby greatly reducing formation of dangerous blood clots. The minimizing of an electrical circuit through blood greatly reduces wasted power into the electrode so that the efficiently cooled electrode is not burdened. The catheter preferably has multiple electrodes with similar features.Type: ApplicationFiled: July 15, 2008Publication date: January 21, 2010Applicant: CathEffects, LLCInventor: Jawahar M. Desai
-
Publication number: 20090048511Abstract: An improved endocardial catheter includes a plurality of longitudinally extending openings adjacent intermediate portions at its distal end. The catheter is actuable from a retracted or collapsed mode, wherein the sealed openings are arranged around the tubular catheter surface, to an expanded mode. The plurality of longitudinal openings in the catheter wall enable radial expansion of the tubular surface at the distal end so that intermediate portions of the tubular catheter surface are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the intermediate portions form wings around the distal end, revealing a cavity within the tubular catheter for the release of contrast material or other fluid into endocardial sites through the longitudinal openings.Type: ApplicationFiled: August 18, 2008Publication date: February 19, 2009Inventor: Jawahar M. Desai
-
Patent number: 7151964Abstract: Multi-phase RF ablation employing a two-dimensional or three-dimensional electrode array produces a multitude of currents paths on the surface of the ablation zone. This results in a uniform lesion with a size defined by the span of the electrode array. An orthogonal electrode catheter array suitable for cardiac ablation is used in conjunction with a two-phase RF power source to produce uniform square-shaped lesions of size 1.2 cm2. Lesions of larger size are created by successive adjacent placement of the square-shaped lesions. A temperature sensor at the electrode tip allows monitoring of ablation temperature and regulation of thereof to minimize the electrode tips from being fouled by coagulum. In another embodiment, an external auxiliary electrode is used in combination with the catheter electrodes. This also produces lesions of greater depth. In yet another embodiment, ablation is performed with a sequence of elementary electrode-electrical configurations.Type: GrantFiled: May 30, 2003Date of Patent: December 19, 2006Inventors: Jawahar M. Desai, Htay L. Nyo
-
Publication number: 20040152980Abstract: An improved endocardial catheter includes a plurality of longitudinally extending-openings adjacent intermediate portions at its distal end. The catheter is actuable from a retracted or collapsed mode, wherein the sealed openings are arranged around the tubular catheter surface, to an expanded mode. The plurality of longitudinal openings in the catheter wall enable radial expansion of the tubular surface at the distal end so that intermediate portions of the tubular catheter surface are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the intermediate portions form wings around the distal end, revealing a cavity within the tubular catheter for the release of contrast material-or other fluid into endocardial sites through the longitudinal openings.Type: ApplicationFiled: January 23, 2004Publication date: August 5, 2004Inventor: Jawahar M. Desai
-
Patent number: 6738673Abstract: A multipolar electrode catheter includes a central and four side electrodes at its distal end. The catheter is actuable from a retracted or collapsed mode wherein the side electrodes are arranged around the tubular catheter outer surface to an expanded mode. A plurality of longitudinal slits in the catheter wall enable radial expansion of the distal end so that the side electrodes are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the side electrodes lie in the same plane and equally spaced from adjacent electrodes. Electrode leads connected to the electrodes enable the electrodes to be used both for mapping and ablation of endocardial sites.Type: GrantFiled: August 21, 2002Date of Patent: May 18, 2004Inventor: Jawahar M. Desai
-
Patent number: 6701180Abstract: An improved endocardial catheter includes a plurality of longitudinally extending openings adjacent intermediate portions at its distal end. The catheter is actuable from a retracted or collapsed mode, wherein the sealed openings are arranged around the tubular catheter surface, to an expanded mode. The plurality of longitudinal openings in the catheter wall enable radial expansion of the tubular surface at the distal end so that intermediate portions of the tubular catheter surface are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the intermediate portions form wings around the distal end, revealing a cavity within the tubular catheter for the release of contrast material or other fluid into endocardial sites through the longitudinal openings.Type: GrantFiled: April 17, 2000Date of Patent: March 2, 2004Inventor: Jawahar M. Desai
-
Publication number: 20030199868Abstract: Multi-phase RF ablation employing a two-dimensional or three-dimensional electrode array produces a multitude of currents paths on the surface of the ablation zone. This results in a uniform lesion with a size defined by the span of the electrode array. An orthogonal electrode catheter array suitable for cardiac ablation is used in conjunction with a two-phase RF power source to produce uniform square-shaped lesions of size 1.2 cm2. Lesions of larger size are created by successive adjacent placement of the square-shaped lesions. A temperature sensor at the electrode tip allows monitoring of ablation temperature and regulation of thereof to minimize the electrode tips from being fouled by coagulum. In another embodiment, an external auxiliary electrode is used in combination with the catheter electrodes. This also produces lesions of greater depth. In yet another embodiment, ablation is performed with a sequence of elementary electrode-electrical configurations.Type: ApplicationFiled: May 30, 2003Publication date: October 23, 2003Inventors: Jawahar M. Desai, Htay L. Nyo
-
Publication number: 20030181819Abstract: A system and method for cardiac mapping and ablation include a multi-electrode catheter introduced percutaneously into a subject's heart and deployable adjacent to various endocardial sites. The electrodes are connectable to a mapping unit, an ablation power unit a pacing unit, all of which are under computer control. Intracardiac electrogram signals emanated from a tachycardia site of origin are detectable by the electrodes. Their arrival times are processed to generate various visual maps to provide real-time guidance for steering the catheter to the tachycardia site of origin. In another aspect, the system also include a physical imaging system which is capable of providing different imaged physical views of the catheter and the heart. These physical views are incorporated into the various visual maps to provide a more physical representation. Once the electrodes are on top of the tachycardia site of origin, electrical energy is supplied by the ablation power unit to effect ablation.Type: ApplicationFiled: February 11, 2003Publication date: September 25, 2003Inventor: Jawahar M. Desai
-
Publication number: 20030060865Abstract: A multipolar electrode catheter includes a central and four side electrodes at its distal end. The catheter is actuable from a retracted or collapsed mode wherein the side electrodes are arranged around the tubular catheter outer surface to an expanded mode. A plurality of longitudinal slits in the catheter wall enable radial expansion of the distal end so that the side electrodes are moved to an operative position radially outward from their position in the retracted mode. In the expanded position, the side electrodes lie in the same plane and equally spaced from adjacent electrodes. Electrode leads connected to the electrodes enable the electrodes to be used both for mapping and ablation of endocardial sites.Type: ApplicationFiled: August 21, 2002Publication date: March 27, 2003Inventor: Jawahar M. Desai