Patents by Inventor Jay A. Chen
Jay A. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12264922Abstract: Aspects of the present disclosure include systems, methods, and devices to facilitate routing of an autonomous vehicle (AV) based on pick-up or drop-off zones (PDZs) that are usable by the AV at destination location. A request for one or more PDZs that are usable by a vehicle to perform a pick-up or drop-off operation at a specified location is received from a vehicular autonomy system of the vehicle. A set of PDZs that are usable by the vehicle at the specified location is identified based on an association between information associated with vehicle and one or more PDZ objects in a data store. Each PDZ object comprising data describing a PDZ. A response is generated based on the set of PDZs and transmitted to the vehicular autonomy system. The response includes at least one PDZ identifier to the set of PDZs.Type: GrantFiled: July 15, 2020Date of Patent: April 1, 2025Assignee: Uber Technologies, Inc.Inventors: Konrad Julian Niemiec, Jay A. Chen, Shenglong Gao, Mark Yen
-
Patent number: 11841705Abstract: Systems and methods for determining appropriate energy replenishment and controlling autonomous vehicles are provided. An example computer-implemented method can include obtaining one or more energy parameters associated with an autonomous vehicle. The method can include determining a refueling task for the autonomous vehicle based at least in part on the energy parameters associated with the autonomous vehicle. The refueling task comprises a first refueling task that is interruptible by a vehicle service assignment or a second refueling task that is not interruptible by the vehicle service assignment. The method can include communicating data indicative of the refueling task to the autonomous vehicle or to a second computing system that manages the autonomous vehicle. The method can include determining whether the refueling task for the autonomous vehicle has been accepted or rejected.Type: GrantFiled: August 30, 2022Date of Patent: December 12, 2023Assignee: Uber Technologies, Inc.Inventors: Brent Justin Goldman, Mark Yen, Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen
-
Patent number: 11829904Abstract: Aspects of the present disclosure include systems, methods, and devices to auction-based on-demand transport selection. A transport request is received from a requesting user of a transport service region. A subset of transport providers to service the transport request are determined from transport providers that service the transport service region. A transport provider is selected to service the transport request based in part on a combination of a proposed cost to service the transport request and a proposed price to be paid in exchange for utilizing one or more pick-up/drop-off zones (PDZs) in servicing the request. The proposed cost to complete the transport request and the proposed price to be paid for utilizing one or more PDZs are specified by the transport provider. A transport assignment is transmitted to the selected transport provider to cause the selected transport provider to service the transport request.Type: GrantFiled: September 21, 2020Date of Patent: November 28, 2023Assignee: Uber Technologies, Inc.Inventors: Konrad Julian Niemiec, Jay A. Chen, Shenglong Gao
-
Patent number: 11651693Abstract: Systems and methods are provided for finding an available pickup/drop-off zone (PDZ) for an autonomous vehicle (AV) to use to pick up a passenger. A PDZ is selected that is likely to be available and that is within a reasonable walking distance of a passenger. The AV and the passenger are guided to the available PDZ. In selecting the available PDZ, the system balances the human and vehicle routing by taking into account the distance possible PDZs are from the passenger, the likelihood the respective PDZs will be available, the passenger's desire/ability to walk to the respective PDZs (e.g., due to physical limitations, weather, etc.), the driving time of the AV to the respective PDZs, the walking time of the passenger to the respective PDZs, and the like.Type: GrantFiled: January 13, 2022Date of Patent: May 16, 2023Assignee: Uber Technologies, Inc.Inventors: Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen, Mark Yen
-
Publication number: 20230062664Abstract: Systems and methods for determining appropriate energy replenishment and controlling autonomous vehicles are provided. An example computer-implemented method can include obtaining one or more energy parameters associated with an autonomous vehicle. The method can include determining a refueling task for the autonomous vehicle based at least in part on the energy parameters associated with the autonomous vehicle. The refueling task comprises a first refueling task that is interruptible by a vehicle service assignment or a second refueling task that is not interruptible by the vehicle service assignment. The method can include communicating data indicative of the refueling task to the autonomous vehicle or to a second computing system that manages the autonomous vehicle. The method can include determining whether the refueling task for the autonomous vehicle has been accepted or rejected.Type: ApplicationFiled: August 30, 2022Publication date: March 2, 2023Inventors: Brent Justin Goldman, Mark Yen, Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen
-
Patent number: 11449055Abstract: Systems and methods for determining appropriate energy replenishment and controlling autonomous vehicles are provided. An example computer-implemented method can include obtaining one or more energy parameters associated with an autonomous vehicle. The method can include determining a refueling task for the autonomous vehicle based at least in part on the energy parameters associated with the autonomous vehicle. The refueling task comprises a first refueling task that is interruptible by a vehicle service assignment or a second refueling task that is not interruptible by the vehicle service assignment. The method can include communicating data indicative of the refueling task to the autonomous vehicle or to a second computing system that manages the autonomous vehicle. The method can include determining whether the refueling task for the autonomous vehicle has been accepted or rejected.Type: GrantFiled: December 31, 2019Date of Patent: September 20, 2022Assignee: Uber Technologies, Inc.Inventors: Brent Justin Goldman, Mark Yen, Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen
-
Patent number: 11436926Abstract: Systems and methods for multi-autonomous vehicle servicing and control are provided. A method can include receiving a service request for a vehicle service. The method can include determining a vehicle route from the start location to the end location. The method can include identifying a plurality of candidate vehicles from a plurality of autonomous vehicles. The method can include obtaining data indicative of one or more operational capabilities for each candidate vehicle in the plurality of autonomous vehicles. The method can include segmenting the vehicle route into one or more route segments based on the one or more operational capabilities associated with each autonomous vehicle in the plurality of autonomous vehicles. The method can include assigning at least two candidate vehicles to perform the vehicle service by assigning at least one of the one or more route segments to each of the at least two candidate vehicle.Type: GrantFiled: December 19, 2019Date of Patent: September 6, 2022Assignee: Uber Technologies, Inc.Inventors: Shenglong Gao, Leigh Gray Hagestad, Jay A. Chen, Mark Yen, Brent Justin Goldman
-
Publication number: 20220139227Abstract: Systems and methods are provided for finding an available pickup/drop-off zone (PDZ) for an autonomous vehicle (AV) to use to pick up a passenger. A PDZ is selected that is likely to be available and that is within a reasonable walking distance of a passenger. The AV and the passenger are guided to the available PDZ. In selecting the available PDZ, the system balances the human and vehicle routing by taking into account the distance possible PDZs are from the passenger, the likelihood the respective PDZs will be available, the passenger's desire/ability to walk to the respective PDZs (e.g., due to physical limitations, weather, etc.), the driving time of the AV to the respective PDZs, the walking time of the passenger to the respective PDZs, and the like.Type: ApplicationFiled: January 13, 2022Publication date: May 5, 2022Inventors: Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen, Mark Yen
-
Patent number: 11244571Abstract: Systems and methods are provided for finding an available pickup/drop-off zone (PDZ) for an autonomous vehicle (AV) to use to pick up a passenger. A PDZ is selected that is likely to be available and that is within a reasonable walking distance of a passenger. The AV and the passenger are guided to the available PDZ. In selecting the available PDZ, the system balances the human and vehicle routing by taking into account the distance possible PDZs are from the passenger, the likelihood the respective PDZs will be available, the passenger's desire/ability to walk to the respective PDZs (e.g., due to physical limitations, weather, etc.), the driving time of the AV to the respective PDZs, the walking time of the passenger to the respective PDZs, and the like.Type: GrantFiled: July 15, 2020Date of Patent: February 8, 2022Assignee: Uber Technologies, Inc.Inventors: Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen, Mark Yen
-
Publication number: 20210109524Abstract: Systems and methods for determining appropriate energy replenishment and controlling autonomous vehicles are provided. An example computer-implemented method can include obtaining one or more energy parameters associated with an autonomous vehicle. The method can include determining a refueling task for the autonomous vehicle based at least in part on the energy parameters associated with the autonomous vehicle. The refueling task comprises a first refueling task that is interruptible by a vehicle service assignment or a second refueling task that is not interruptible by the vehicle service assignment. The method can include communicating data indicative of the refueling task to the autonomous vehicle or to a second computing system that manages the autonomous vehicle. The method can include determining whether the refueling task for the autonomous vehicle has been accepted or rejected.Type: ApplicationFiled: December 31, 2019Publication date: April 15, 2021Inventors: Brent Justin Goldman, Mark Yen, Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen
-
Publication number: 20210104160Abstract: Systems and methods for multi-autonomous vehicle servicing and control are provided. A method can include receiving a service request for a vehicle service. For example, the service request can include a start location and an end location. The method can include determining a vehicle route from the start location to the end location. The method can include identifying a plurality of candidate vehicles from a plurality of autonomous vehicles. For example, each candidate vehicle in the plurality of candidate vehicles can be available to perform at least one portion of the vehicle route. The method can include obtaining data indicative of one or more operational capabilities for each candidate vehicle in the plurality of autonomous vehicles. The method can include segmenting the vehicle route into one or more route segments based on the one or more operational capabilities associated with each autonomous vehicle in the plurality of autonomous vehicles.Type: ApplicationFiled: December 19, 2019Publication date: April 8, 2021Inventors: Shenglong Gao, Leigh Gray Hagestad, Jay A. Chen, Mark Yen, Brent Justin Goldman
-
Publication number: 20210097452Abstract: Aspects of the present disclosure include systems, methods, and devices to auction-based on-demand transport selection. A transport request is received from a requesting user of a transport service region. A subset of transport providers to service the transport request are determined from transport providers that service the transport service region. A transport provider is selected to service the transport request based in part on a combination of a proposed cost to service the transport request and a proposed price to be paid in exchange for utilizing one or more pick-up/drop-off zones (PDZs) in servicing the request. The proposed cost to complete the transport request and the proposed price to be paid for utilizing one or more PDZs are specified by the transport provider. A transport assignment is transmitted to the selected transport provider to cause the selected transport provider to service the transport request.Type: ApplicationFiled: September 21, 2020Publication date: April 1, 2021Inventors: Konrad Julian Niemiec, Jay A. Chen, Shenglong Gao
-
Publication number: 20210042668Abstract: Systems and methods for selecting, deploying, and controlling autonomous vehicles are provided. For example, a method can include obtaining data indicative of transportation service request and determining that a human driver would not prefer to service the transportation service request. The method can include determining an availability of a plurality of vehicle service providers for the transportation service request (e.g., human driven vehicles, autonomous vehicles). The method can include obtaining operational capability information associated with the autonomous vehicle(s). The method can include generating ranking data associated with the available vehicle service providers and determining at least one selected vehicle service provider for the transportation service request utilizing the ranking data.Type: ApplicationFiled: September 16, 2019Publication date: February 11, 2021Inventors: Shenglong Gao, Jay A. Chen, Konrad Julian Niemiec
-
Publication number: 20210035450Abstract: Systems and methods are provided for finding an available pickup/drop-off zone (PDZ) for an autonomous vehicle (AV) to use to pick up a passenger. A PDZ is selected that is likely to be available and that is within a reasonable walking distance of a passenger. The AV and the passenger are guided to the available PDZ. In selecting the available PDZ, the system balances the human and vehicle routing by taking into account the distance possible PDZs are from the passenger, the likelihood the respective PDZs will be available, the passenger's desire/ability to walk to the respective PDZs (e.g., due to physical limitations, weather, etc.), the driving time of the AV to the respective PDZs, the walking time of the passenger to the respective PDZs, and the like.Type: ApplicationFiled: July 15, 2020Publication date: February 4, 2021Inventors: Shenglong Gao, Konrad Julian Niemiec, Jay A. Chen, Mark Yen
-
Publication number: 20210033410Abstract: Aspects of the present disclosure include systems, methods, and devices to facilitate routing of an autonomous vehicle (AV) based on pick-up or drop-off zones (PDZs) that are usable by the AV at destination location. A request for one or more PDZs that are usable by a vehicle to perform a pick-up or drop-off operation at a specified location is received from a vehicular autonomy system of the vehicle. A set of PDZs that are usable by the vehicle at the specified location is identified based on an association between information associated with vehicle and one or more PDZ objects in a data store. Each PDZ object comprising data describing a PDZ. A response is generated based on the set of PDZs and transmitted to the vehicular autonomy system. The response includes at least one PDZ identifier to the set of PDZs.Type: ApplicationFiled: July 15, 2020Publication date: February 4, 2021Inventors: Konrad Julian Niemiec, Jay A. Chen, Shenglong Gao, Mark Yen
-
Publication number: 20200241869Abstract: Systems and methods for enabling communication between a service entity and third-party autonomous vehicles are provided. A method can include accessing, by a first computing system associated with a third-party entity, a software package stored within the first computing system. The software package can be associated with a service entity that coordinates a vehicle service for the one or more autonomous vehicles. The method can further include establishing, by the first computing system via the software package, a communication connection with a second computing system that is associated with the service entity. The second computing system can include one or more backend services to facilitate the vehicle service. The method can further include communicating, between the first computing system and the second computing system, data indicative of a communication associated with the one or more autonomous vehicles via the communication connection.Type: ApplicationFiled: July 30, 2019Publication date: July 30, 2020Inventors: Konrad Julian Niemiec, Andrii Iasynetskyi, Jay A. Chen, Matthew James Way, Mark Yen, Michael Voznesensky, Vladimir Zaytsev, Brent Justin Goldman