Patents by Inventor Jay Collin Tobia

Jay Collin Tobia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190193159
    Abstract: In an aspect, multiple metallic base materials are mixed into a user-controlled multimetallic mixture and extruded into a net shape, which is thermally processed into a multimetallic and/or alloyed object. In another aspect, a superstructure is fabricated around an object, but physically isolated from the object, with a shape facilitating robotic handling of the superstructure, along with removal of powder from the object, after a three-dimensional printing process. In another aspect, a ceramic precursor is used to create a separable interface between a support structure and a sinterable object. More specifically, a sinterable structure is fabricated from a sinterable powder in an aqueous binder, and an interface layer is formed by depositing a ceramic precursor in a nonaqueous solution onto the sinterable structure. When the ceramic precursor is exposed to water in the aqueous binder, the ceramic can precipitate to form an unsinterable, ceramic interface layer between sinterable structures.
    Type: Application
    Filed: April 24, 2018
    Publication date: June 27, 2019
    Applicant: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jay Collin Tobia, Animesh Bose
  • Publication number: 20180304359
    Abstract: Multiple metallic base materials are mixed into a user-controlled multimetallic mixture and extruded into a net shape according to a digital model. The net shape can then be thermally processed into a multimetallic and/or alloyed object.
    Type: Application
    Filed: April 24, 2018
    Publication date: October 25, 2018
    Inventors: Michael Andrew Gibson, Jay Collin Tobia, Animesh Bose
  • Publication number: 20180236541
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving fabrication of three-dimensional objects formed through layer-by-layer delivery of an ink onto a powder of metal particles in a powder bed. More specifically, local densities of the powder of each layer may be determined and used as a basis for selectively distributing the ink including nanoparticles to increase density of one or more portions of the respective layer as compared to density of the respective portion of the layer prior to the selective distribution of the ink. Thus, the selective distribution of the ink including the nanoparticles may reduce density variations in each layer of three-dimensional objects being fabricated. In turn, such a reduction in density variation associated with the fabrication of three-dimensional objects may reduce the likelihood of defects (e.g., through unintended variations in shrinkage rates) associated with subsequent processing of the three-dimensional objects.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Shashank Holenarasipura Raghu, Jay Collin Tobia, Michael Andrew Gibson
  • Publication number: 20180162044
    Abstract: Techniques and compositions are disclosed for feedstocks with powder/binder systems for three-dimensional printing, such as fused filament fabrication. For example, a feedstock may include a first high polymer and a second polymer for supporting a shape of a three-dimensional object through various processing stages. The first polymer may be a moderate or high molecular weight polymer, and the second polymer may be a high molecular weight polymer. The first polymer may provide improved print quality and strength, as compared to a low molecular weight polymer, in initial processing. In a solvent, the first polymer may be preferentially dissolved over the second polymer such that the second polymer may remain to support a net shape of the three-dimensional object in subsequent processing. Accordingly, the combination of the first polymer and the second polymer may be useful for rapid three-dimensional manufacturing of high quality parts.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 14, 2018
    Inventors: Michael Andrew Gibson, Ricardo Fulop, Animesh Bose, Alexander C. Barbati, Jay Collin Tobia
  • Publication number: 20180162047
    Abstract: Techniques and compositions are disclosed for feedstocks with powder/binder systems for three-dimensional printing, such as fused filament fabrication. For example, a plurality of feedstocks may be combined to form a three-dimensional object having a spatial gradient of a first primary binder and a second primary binder. The spatial gradient of the first primary binder and the second primary binder along the three-dimensional object may form the three-dimensional object with an advantageous combination of adequate structural support and a rapid overall rate of debinding the first primary binder and the second primary binder from the three-dimensional object as the three-dimensional object is processed into a final part. Accordingly, the spatial gradient of the first primary binder and the second primary binder may be useful for rapid three-dimensional manufacturing of high quality parts.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 14, 2018
    Inventors: Michael Andrew Gibson, Alexander C. Barbati, Jay Collin Tobia
  • Publication number: 20180134029
    Abstract: Systems, methods, and components are disclosed for controlling layer separation in stereolithographic fabrication of three-dimensional objects. Each layer of the three-dimensional object can be cured and separated in discrete portions to facilitate controlling forces in the layers of a three-dimensional object. For example, controlling curing and separation of layers of a three-dimensional object according to the systems, methods, and components disclosed can facilitate accurately forming the three-dimensional object from cured particle-loaded resins. More specifically, particle loading can decrease the shear strength of the cured resin and, thus, controlling the forces exerted on a given layer of a cured particle-loaded resin can be particularly useful for reducing the likelihood of deformation in a three-dimensional object including the particles. In turn, the accurately formed three-dimensional object including the particles can be densified to form a dimensionally accurate finished part.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 17, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Michael J. Tarkanian, Yet-Ming Chiang, Jay Collin Tobia, Olivia Molnar Lam
  • Publication number: 20170297111
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart, Jay Collin Tobia, Nihan Tuncer, Brian Daniel Kernan, Tomek Andrzej Brzezinski