Patents by Inventor Jay Dlutowski

Jay Dlutowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11267023
    Abstract: A hearing restoration system with a housing having a user interface, a pump, control circuitry, and at least one pneumatic port. The hearing restoration system comprises one or more pneumatic ports, which are connected fluidly to one or more tubes. Furthermore, the housing may have a vacuum chamber fluidly connected to the third pneumatic port. A control circuitry is configured to detect a mode of operation of the system based on a measurement of pressure or vacuum inside the hearing aid restoration apparatus.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: March 8, 2022
    Assignee: MedRx Inc.
    Inventor: Jay Dlutowski
  • Publication number: 20180104725
    Abstract: A hearing restoration system with a housing having a user interface, a pump, control circuitry, and at least one pneumatic port. The hearing restoration system comprises one or more pneumatic ports, which are connected fluidly to one or more tubes. Furthermore, the housing may have a vacuum chamber fluidly connected to the third pneumatic port. A control circuitry is configured to detect a mode of operation of the system based on a measurement of pressure or vacuum inside the hearing aid restoration apparatus.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 19, 2018
    Applicant: MedRx Inc.
    Inventor: Jay DLUTOWSKI
  • Patent number: 9437906
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. A thin aluminum anode galvanic cell having a meshed structure is provided which includes a catalytic metal layer positioned on a patterned silicon substrate, an etched dielectric layer positioned to cover the catalytic metal layer, the catalytic metal layer serving as an etch stop for the etched dielectric layer and an etched aluminum layer positioned to cover the dielectric layer, the dielectric layer serving as an etch stop for the etched aluminum layer.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: September 6, 2016
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Patent number: 8864852
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. A method of fabricating a thin aluminum anode galvanic cell is provided, the method including, depositing a layer of catalytic metal on a surface of a first substrate, depositing and patterning a benzocyclobutene layer to form a reservoir having four sidewalls of benzocyclobutene on the surface of the catalytic layer, depositing a layer of aluminum on a surface of a second substrate and bonding the first substrate to the second substrate to form a galvanic cell bounded by the catalytic metal layer and the aluminum layer and separated by the reservoir walls of benzocyclobutene, the second substrate positioned in overlying relation to contact the four sidewalls of the reservoir with the aluminum layer facing the catalytic layer.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: October 21, 2014
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Publication number: 20140302406
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. A thin aluminum anode galvanic cell having a meshed structure is provided which includes a catalytic metal layer positioned on a patterned silicon substrate, an etched dielectric layer positioned to cover the catalytic metal layer, the catalytic metal layer serving as an etch stop for the etched dielectric layer and an etched aluminum layer positioned to cover the dielectric layer, the dielectric layer serving as an etch stop for the etched aluminum layer.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 9, 2014
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Publication number: 20140209564
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. A method of fabricating a thin aluminum anode galvanic cell is provided, the method including, depositing a layer of catalytic metal on a surface of a first substrate, depositing and patterning a benzocyclobutene layer to form a reservoir having four sidewalls of benzocyclobutene on the surface of the catalytic layer, depositing a layer of aluminum on a surface of a second substrate and bonding the first substrate to the second substrate to form a galvanic cell bounded by the catalytic metal layer and the aluminum layer and separated by the reservoir walls of benzocyclobutene, the second substrate positioned in overlying relation to contact the four sidewalls of the reservoir with the aluminum layer facing the catalytic layer.
    Type: Application
    Filed: August 30, 2013
    Publication date: July 31, 2014
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Patent number: 8715370
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. A method of fabricating a thin aluminum anode galvanic cell is provided, the method comprising, forming a recess in the silicon wafer, the recess having no more than three sidewalls, depositing a catalytic metal layer on a bottom surface of the recess, positioning a double-side sticky tape layer having a bottom side positioned to contact the no more than three sidewalls of the recess and positioning an aluminum foil layer to contact a top side of the double-side sticky tape layer and in overlying relation to the recess, thereby forming the galvanic cell.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 6, 2014
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Publication number: 20140082932
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. A method of fabricating a thin aluminum anode galvanic cell is provided, the method comprising, forming a recess in the silicon wafer, the recess having no more than three sidewalls, depositing a catalytic metal layer on a bottom surface of the recess, positioning a double-side sticky tape layer having a bottom side positioned to contact the no more than three sidewalls of the recess and positioning an aluminum foil layer to contact a top side of the double-side sticky tape layer and in overlying relation to the recess, thereby forming the galvanic cell.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 27, 2014
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Patent number: 8597821
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. In the present invention, semiconductor fabrication methods are used to fabricate aluminum galvanic cells, wherein a catalytic material to be used as the cathode is deposited on a substrate and an insulating spacing material is deposited on the cathode and patterned using photolithography. The spacing material can either be used as a sacrificial layer to expose the electrodes or serve as a support for one of the electrodes. Similarly, the aluminum anode may be deposited and patterned on another substrate and bonded to the first substrate, or can be deposited directly on the insulating material prior to patterning. The cell is packaged and connected to a delivery system to provide delivery of the electrolyte when activation of the cell is desired.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: December 3, 2013
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Patent number: 7958906
    Abstract: In accordance with an embodiment of the present invention, a thermally induced single-use valve is provided including a silicon wafer having a top surface and a bottom surface and at least one cavity formed in the bottom surface of the wafer, a thermally deformable membrane suspended across the cavity on the top surface of the wafer and at least one resistive element patterned on top of the thermally deformable membrane.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 14, 2011
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Michelle Cardenas, John Bumgarner, Weidong Wang, Larry Langebrake
  • Patent number: 7829215
    Abstract: The present invention is directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells. In the present invention, semiconductor fabrication methods are used to fabricate aluminum galvanic cells, wherein a catalytic material to be used as the cathode is deposited on a substrate and an insulating spacing material is deposited on the cathode and patterned using photolithography. The spacing material can either be used as a sacrificial layer to expose the electrodes or serve as a support for one of the electrodes. Similarly, the aluminum anode may be deposited and patterned on another substrate and bonded to the first substrate, or can be deposited directly on the insulating material prior to patterning. The cell is packaged and connected to a delivery system to provide delivery of the electrolyte when activation of the cell is desired.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: November 9, 2010
    Assignee: University of South Florida
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Melynda C. Calves, John Bumgarner, Larry Langebrake
  • Publication number: 20100180953
    Abstract: In accordance with an embodiment of the present invention, a thermally induced single-use valve is provided including a silicon wafer having a top surface and a bottom surface and at least one cavity formed in the bottom surface of the wafer, a thermally deformable membrane suspended across the cavity on the top surface of the wafer and at least one resistive element patterned on top of the thermally deformable membrane.
    Type: Application
    Filed: April 11, 2007
    Publication date: July 22, 2010
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Andres M. Cardenas-Valencia, Jay Dlutowski, Michelle Cardenas, John Bumgarner, Weidong Wang, Larry Langebrake
  • Publication number: 20070111090
    Abstract: The present invention in directed to the fabrication of thin aluminum anode batteries using a highly reproducible process that enables high volume manufacturing of the galvanic cells.
    Type: Application
    Filed: August 29, 2006
    Publication date: May 17, 2007
    Applicant: UNIVERSITY OF SOUTH FLORIDA
    Inventors: Andres Cardenas-Valencia, Jay Dlutowski, Melynda Calves, John Bumgarner, Larry Langebrake