Patents by Inventor Jay E. Lane

Jay E. Lane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10392946
    Abstract: A turbine blade of ceramic matrix composite material construction adapted for use in a gas turbine engine is disclosed. The turbine blade includes a root, an airfoil, and a platform. The root is adapted to attach the turbine blade to a disk. The airfoil is shaped to interact with hot gasses moving through the gas path of a gas turbine engine and cause rotation of the turbine blade when the turbine blade is used in a gas turbine engine. The platform has an attachment side facing the root and a gas path side facing the airfoil. The platform is arranged between the root and the airfoil and shaped to extend outwardly from the root and the airfoil in order to block migration of gasses from the gas path toward the root when the turbine blade is used in a gas turbine engine.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: August 27, 2019
    Assignees: Rolls-Royce North American Technologies Inc., Rolls-Royce Corporation
    Inventors: Ted J. Freeman, Jay E. Lane
  • Patent number: 10112875
    Abstract: A method for protecting the hybrid ceramic structure from moisture attack in a high temperature combustion environment is provided. The structure includes a ceramic matrix composite (CMC) substrate (12). A thermal insulation material (14) is disposed on the substrate. A vapor resistant material (20) is applied through at least one surface of the hybrid ceramic structure while the hybrid ceramic structure is in a bisque condition that provides a degree of porosity to the hybrid ceramic structure so that the vapor resistant material is infiltrated through interstices available within a thickness of the hybrid ceramic structure.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 30, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Jay E. Lane, Gary B. Merrill
  • Publication number: 20180171805
    Abstract: A turbine blade of ceramic matrix composite material construction adapted for use in a gas turbine engine is disclosed. The turbine blade includes a root, an airfoil, and a platform. The root is adapted to attach the turbine blade to a disk. The airfoil is shaped to interact with hot gasses moving through the gas path of a gas turbine engine and cause rotation of the turbine blade when the turbine blade is used in a gas turbine engine. The platform has an attachment side facing the root and a gas path side facing the airfoil. The platform is arranged between the root and the airfoil and shaped to extend outwardly from the root and the airfoil in order to block migration of gasses from the gas path toward the root when the turbine blade is used in a gas turbine engine.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 21, 2018
    Inventors: Ted J. Freeman, Jay E. Lane
  • Patent number: 9920634
    Abstract: One embodiment of the present invention is a unique method of manufacturing a component for a turbomachine, such as an airfoil. Another embodiment is a unique airfoil. Yet another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for cooled gas turbine engine components. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: March 20, 2018
    Assignees: Rolls-Royce Corporation, Rolls-Royce North American Technologies, Inc.
    Inventors: Richard Christopher Uskert, Ted Joseph Freeman, David John Thomas, Jay E. Lane, Adam Lee Chamberlain, John Alan Weaver
  • Publication number: 20160207841
    Abstract: A method for protecting the hybrid ceramic structure from moisture attack in a high temperature combustion environment is provided. The structure includes a ceramic matrix composite (CMC) substrate (12). A thermal insulation material (14) is disposed on the substrate. A vapor resistant material (20) is applied through at least one surface of the hybrid ceramic structure while the hybrid ceramic structure is in a bisque condition that provides a degree of porosity to the hybrid ceramic structure so that the vapor resistant material is infiltrated through interstices available within a thickness of the hybrid ceramic structure.
    Type: Application
    Filed: March 31, 2016
    Publication date: July 21, 2016
    Inventors: Jay E. Lane, Gary B. Merrill
  • Patent number: 9328028
    Abstract: A hybrid ceramic structure and a method for protecting the hybrid ceramic structure from moisture attack in a high temperature combustion environment are provided. The structure includes a ceramic matrix composite (CMC) substrate (12). A thermal insulation material (14) is disposed on the substrate. A vapor resistant material (20) is applied through at least one surface of the hybrid ceramic structure while the hybrid ceramic structure is in a bisque condition that provides a degree of porosity to the hybrid ceramic structure so that the vapor resistant material is infiltrated through interstices available within a thickness of the hybrid ceramic structure.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: May 3, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Jay E. Lane, Gary B. Merrill
  • Patent number: 9297269
    Abstract: A gas turbine component (20) with a layer of ceramic material (22) defining a wear surface (21), in which an array of cross-shaped depressions (26A, 26B) formed in the wear surface (21) define a continuous labyrinth of orthogonal walls (28, 30) of the ceramic material, and reduce the area of the wear surface (21) by about 50%. Within a representative area (36) of the wear surface (21), the depressions (26A, 26B) provide a ratio of a lineal sum of depression perimeters (27) divided by the representative area (36) of the wear surface of least 0.9 per unit of measurement for improved abradability characteristics of the wear surface (21).
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: March 29, 2016
    Assignee: Siemens Energy, Inc.
    Inventors: Jay A. Morrison, Jay E. Lane, Gary B. Merrill
  • Patent number: 9068464
    Abstract: A method for joining a first CMC part (30) having an outer joining portion (32), and a second CMC part (36) having an inner joining portion (38). The second CMC part (36) is heat-cured to a stage of shrinkage more complete than that of the first CMC part (30) prior to joining. The two CMC parts (30, 36) are joined in a mating interface that captures the inner joining portion (38) within the outer joining portion (32). The assembled parts (30, 36) are then fired together, resulting in differential shrinkage that compresses the outer joining portion (32) onto the inner joining portion (38), providing a tightly pre-stressed joint. Optionally, a refractory adhesive (42) may be used in the joint. Shrinkage of the outer joining portion (32) avoids shrinkage cracks in the adhesive (42).
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: June 30, 2015
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Jay A. Morrison, Jay E. Lane, Gary B. Merrill
  • Publication number: 20140311163
    Abstract: One embodiment of the present invention is a unique method of manufacturing a component for a turbomachine, such as an airfoil. Another embodiment is a unique airfoil. Yet another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for cooled gas turbine engine components. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 23, 2014
    Inventors: Richard Christopher Uskert, Ted Joseph Freeman, David John Thomas, Jay E. Lane, Adam Lee Chamberlain, John Alan Weaver
  • Publication number: 20140294652
    Abstract: A method of making a combustion turbine component includes assembling a plurality of metallic combustion turbine subcomponent greenbodies together to form a metallic greenbody assembly and sintering the metallic greenbody assembly to thereby form the combustion turbine component. Each of the plurality of metallic combustion turbine subcomponent greenbodies may be formed by direct metal fabrication (DMF). In addition, each of plurality of metallic combustion turbine subcomponent greenbodies may include an activatable binder and the activatable binder may be activated prior to sintering.
    Type: Application
    Filed: December 30, 2013
    Publication date: October 2, 2014
    Inventors: Jay A. Morrison, Jay E. Lane, Allister W. James, Michael Appleby, Iain Fraser, John Paulus
  • Patent number: 8366983
    Abstract: A method of manufacturing a thermal insulation article may include positioning, between opposing mold walls, a first layer comprising a ceramic matrix composite (CMC) material and a second layer comprising a plurality of tiles. The method may further include moving the opposing mold walls together to compress together the first and second layers, and curing the compressed together first and second layers to produce the thermal insulation article.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: February 5, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Jay E. Lane, Gary B. Merrill
  • Patent number: 8357323
    Abstract: A stitching geometry and method for selective interlaminar reinforcement of a CMC wall (20A). The CMC wall is formed of ceramic fiber layers (22) individually infused with a ceramic matrix, stacked, and at least partially cured. A row of holes is formed in the wall, and a ceramic fiber thread (25) is infused with a wet ceramic matrix and passed through the holes to form stitches (28, 30, 31). The stitches are then cured, causing them to shrink more than any remaining wall shrinkage, thus tensioning the stitches and compressing the wall laminae together. The stitches may have through-wall portions (30, 31) that are angled differently in different wall areas as a function of interlaminar shear over interlaminar tension, optimizing wall reinforcement locally depending on magnitude and direction of shear. Alternate rows of stitches (54, 56) may have offsets in a stitch direction (34) and/or different through-wall angles (A1, A2).
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: January 22, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Jay A. Morrison, Jay E. Lane
  • Patent number: 8257809
    Abstract: A ceramic matrix composite wall structure (20A) constructed of interlocking layers (22A, 24A) of woven material with integral cooling channels (28A, 32A). The CMC layer closest to the hot gas path (41) contains internal cooling tubes (26A, 30A) protruding into a ceramic insulating layer (40A). This construction provides a cooled CMC lamellate wall structure with an interlocking truss core.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: September 4, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Jay A. Morrison, Douglas A. Keller, Malberto F. Gonzalez, Jay E. Lane
  • Publication number: 20120125585
    Abstract: A ceramic matrix composite wall structure (20A) constructed of interlocking layers (22A, 24A) of woven material with integral cooling channels (28A, 32A). The CMC layer closest to the hot gas path (41) contains internal cooling tubes (26A, 30A) protruding into a ceramic insulating layer (40A). This construction provides a cooled CMC lamellate wall structure with an interlocking truss core.
    Type: Application
    Filed: March 8, 2007
    Publication date: May 24, 2012
    Inventors: Jay A. Morrison, Douglas A. Keller, Malberto F. Gonzalez, Jay E. Lane
  • Publication number: 20120000072
    Abstract: A method of making a combustion turbine component includes forming a metallic body by direct metal fabrication (DMF) to have at least one surface portion defining a first plurality of surface cooling features each having a first dimension and at least one second surface cooling feature on at least one of the first plurality of surface cooling features and having a second dimension less than said first dimension and less than 200 ?m. Forming the metallic body by DMF may include forming a plurality of metallic combustion turbine subcomponent greenbodies by DMF and assembling the plurality of metallic combustion turbine subcomponent greenbodies together to form a metallic greenbody assembly. The metallic greenbody assembly may be sintered to thereby form the metallic body.
    Type: Application
    Filed: July 22, 2009
    Publication date: January 5, 2012
    Inventors: Jay A. Morrison, Jay E. Lane, Allister W. James, Gary B. Merrill, John R. Paulus, Mike P. Appleby, Iain A. Fraser
  • Patent number: 7985493
    Abstract: An insulation (10, 100) and an insulated article (40, 56, 62, 82) having improved properties for use in a high temperature combustion environment. The improved insulation may include composite particles (18) of alumina and zirconia-hafnia exhibiting micro-cracks that remain contained within the particles and do not extend into a surrounding binder material. The improved insulation may be a vapor resistance layer (VRL) top coat (80) disposed over a layer of mullite-based ceramic thermal insulation (72) and may be anchored to the thermal insulation by extending into pits (79) formed in the surface (S?) of the mullite-based insulation. Porosity and thickness of the top coat may be controlled to provide compatibility between the elastic modulus of the zirconia-hafnia top coat and that of the underlying mullite-based insulation.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: July 26, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Jay E. Lane, Christian X. Campbell
  • Publication number: 20110151239
    Abstract: An insulation (10, 100) and an insulated article (40, 56, 62, 82) having improved properties for use in a high temperature combustion environment. The improved insulation may include composite particles (18) of alumina and zirconia-hafnia exhibiting micro-cracks that remain contained within the particles and do not extend into a surrounding binder material. The improved insulation may be a vapor resistance layer (VRL) top coat (80) disposed over a layer of mullite-based ceramic thermal insulation (72) and may be anchored to the thermal insulation by extending into pits (79) formed in the surface (S?) of the mullite-based insulation. Porosity and thickness of the top coat may be controlled to provide compatibility between the elastic modulus of the zirconia hafnia top coat and that of the underlying mullite-based insulation.
    Type: Application
    Filed: September 6, 2006
    Publication date: June 23, 2011
    Inventors: Jay E. Lane, Christian X. Campbell
  • Publication number: 20110016717
    Abstract: A method of making a combustion turbine component includes forming a metallic body by direct metal fabrication (DMF) to have at least one surface portion defining a first plurality of surface cooling features each having a first dimension and at least one second surface cooling feature on at least one of the first plurality of surface cooling features and having a second dimension less than said first dimension and less than 200 ?m. Forming the metallic body by DMF may include forming a plurality of metallic combustion turbine subcomponent greenbodies by DMF and assembling the plurality of metallic combustion turbine subcomponent greenbodies together to form a metallic greenbody assembly. The metallic greenbody assembly may be sintered to thereby form the metallic body.
    Type: Application
    Filed: July 22, 2009
    Publication date: January 27, 2011
    Inventors: Jay A. Morrison, Jay E. Lane, Allister W. James, Gary B. Merrill, John R. Paulus, Mike P. Appleby, Iain A. Fraser
  • Patent number: 7874059
    Abstract: A bushing (30, 31) in a hole (26) through a ceramic matrix composite structure (20) with a flange (34, 38) on each end of the bushing (30, 31) extending beyond and around the hole and pressing against opposed surfaces (22,24) of the CMC structure (20) with a preload that resists buckling of the composite structure fibers and resists internal CMC fiber separation. A connecting element (40), such as a bolt or pin, passes through the bushing (30, 31) for engagement with a supporting element (50). The bushing (31) may be formed in place as a single piece of ceramic, and cured along with the CMC structure (20), or it may be formed as two ceramic or metal parts (32, 36) that are joined together and preloaded by threads (33). The connecting element (40) may be a pin, or it may be a bolt with a shaft threaded into one part (32) of the bushing and a head (42) that pushes the second flange (38) toward the first flange (34).
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: January 25, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Jay A. Morrison, Jay E. Lane
  • Publication number: 20100263194
    Abstract: A bushing (30, 31) in a hole (26) through a ceramic matrix composite structure (20) with a flange (34, 38) on each end of the bushing (30, 31) extending beyond and around the hole and pressing against opposed surfaces (22,24) of the CMC structure (20) with a preload that resists buckling of the composite structure fibers and resists internal CMC fiber separation. A connecting element (40), such as a bolt or pin, passes through the bushing (30, 31) for engagement with a supporting element (50). The bushing (31) may be formed in place as a single piece of ceramic, and cured along with the CMC structure (20), or it may be formed as two ceramic or metal parts (32, 36) that are joined together and preloaded by threads (33). The connecting element (40) may be a pin, or it may be a bolt with a shaft threaded into one part (32) of the bushing and a head (42) that pushes the second flange (38) toward the first flange (34).
    Type: Application
    Filed: January 12, 2006
    Publication date: October 21, 2010
    Inventors: Jay A. Morrison, Jay E. Lane