Patents by Inventor Jay Edgar Lane

Jay Edgar Lane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7402347
    Abstract: A thermal barrier layer (20) is formed by exposing an oxide ceramic material to a thermal regiment to create a surface heat affected zone effective to protect an underlying structural layer (18) of the material. The heat affected surface layer exhibits a lower strength and higher thermal conductivity than the underlying load-carrying material; however, it retains a sufficiently low thermal conductivity to function as an effective thermal barrier coating. Importantly, because the degraded material retains the same composition and thermal expansion characteristics as the underlying material, the thermal barrier layer remains integrally connected in graded fashion with the underlying material without an interface boundary there between.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: July 22, 2008
    Assignee: Siemens Power Generation, Inc.
    Inventors: Jay A. Morrison, Daniel G. Thompson, Gary B. Merrill, Jay Edgar Lane
  • Patent number: 7311790
    Abstract: A hybrid structure (50) and method of manufacturing the same including a structural ceramic matrix composite (CMC) material (42) coated with a layer of ceramic insulating tiles (24). Individual ceramic tiles are attached to a surface (22) of a mold (20). The exterior surface (32) of the tiles may be subjected to a mechanical process such as machining with the mold in place to provide mechanical support for the tiles. A layer of CMC material is then applied to bond the tiles and the CMC material together into a hybrid structure. The mold may include a fugitive material portion (26) to facilitate removal of the mold when the hybrid structure has a complex shape. Tiles located in different regions of the structure may have different compositions and/or dimensions. The gaps between adjacent tiles may be filled from the outside before the CMC material is applied or from the inside after the mold is removed.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: December 25, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Jay A. Morrison, Gary B. Merrill, Michael A. Burke, Jay Edgar Lane, Steven James Vance
  • Patent number: 7093359
    Abstract: A method of manufacturing a composite structure uses a layer of an insulating material (22) as a mold for forming a substrate of a ceramic matrix composite (CMC) material (24). The insulating material may be formed in the shape of a cylinder (10) with the CMC material wound on an outer surface (14) of the cylinder to form a gas turbine combustor liner (20). Alternatively, the insulating material may be formed in the shape of an airfoil section (32) with the CMC material formed on an inside surface (36) of the insulating material. The airfoil section may be formed of a plurality of halves (42, 44) to facilitate the lay-up of the CMC material onto an easily accessible surface, with the halves then joined together to form the complete composite airfoil. In another embodiment, a box structure (102) defining a hot gas flow passage (98) is manufactured by forming insulating material in the shape of opposed airfoil halves (104) joined at respective opposed ends by platform members (109).
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: August 22, 2006
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Jay A. Morrison, Gary Brian Merrill, Jay Edgar Lane, Steven C. Butner, Harry A. Albrecht, Scott M. Widrig, Yevgeniy P. Shteyman
  • Patent number: 6977060
    Abstract: A method for making a material system includes the steps of: providing a chamber, placing hollow geometric shapes in the chamber, closing the chamber, evacuating air from the chamber, feeding a binder for the shapes into the evacuated chamber to impregnate the geometric shapes, drying the binder permeated geometric shapes, and heating the hollow shapes and binder to provide a unitary, sintered material system.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: December 20, 2005
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Gary Brian Merrill, Jay Edgar Lane
  • Patent number: 6929852
    Abstract: An alumina comprising composition protective overlayer (20) for protecting a ceramic matrix composite material (12) from a high temperature, moisture-containing environment. Alumina may be used as a protective overlayer to protect an underlying mullite layer to temperatures in excess of 1,500° C. The coating may have porosity of greater than 15% for improved thermal shock protection. To prevent the ingress of oxygen to an underlying ceramic material, an oxide barrier layer may be optionally disposed between the alumina coating and the ceramic material. Such a protective overlayer may be used for an article having a ceramic oxide or non-oxide substrate.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: August 16, 2005
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Jay Edgar Lane, Gary Brian Merrill
  • Patent number: 6884384
    Abstract: A method for making a thermal insulating material includes the steps of: providing a chamber, placing hollow geometric shapes in the chamber, closing the chamber, evacuating air from the chamber, feeding a slurry into an adjacent slurry chamber, pressurizing the slurry chamber and forcing the slurry in to the sphere chamber around the spheres against a fibrous material adjacent a side wall of the sphere chamber. The fibrous material allows capillary wicking of the liquid from the slurry around the spheres. Due to this pressure the spheres and slurry are semi dried into a green state. The material in its green state green is subsequently dried and fired to form the insulating material.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: April 26, 2005
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Gary Brian Merrill, Jay Edgar Lane, Curtis Gosik
  • Publication number: 20050076504
    Abstract: A method of manufacturing a composite structure uses a layer of an insulating material (22) as a mold for forming a substrate of a ceramic matrix composite (CMC) material (24). The insulating material may be formed in the shape of a cylinder (10) with the CMC material wound on an outer surface (14) of the cylinder to form a gas turbine combustor liner (20). Alternatively, the insulating material may be formed in the shape of an airfoil section (32) with the CMC material formed on an inside surface (36) of the insulating material. The airfoil section may be formed of a plurality of halves (42, 44) to facilitate the lay-up of the CMC material onto an easily accessible surface, with the halves then joined together to form the complete composite airfoil. In another embodiment, a box structure (102) defining a hot gas flow passage (98) is manufactured by forming insulating material in the shape of opposed airfoil halves (104) joined at respective opposed ends by platform members (109).
    Type: Application
    Filed: September 17, 2002
    Publication date: April 14, 2005
    Inventors: Jay A. Morrison, Gary Merrill, Jay Edgar Lane, Steven C. Butner, Harry A. Albrecht, Scott Widrig, Yevgeniy Shteyman
  • Publication number: 20040214051
    Abstract: A hybrid structure (50) and method of manufacturing the same including a structural ceramic matrix composite (CMC) material (42) coated with a layer of ceramic insulating tiles (24). Individual ceramic tiles are attached to a surface (22) of a mold (20). The exterior surface (32) of the tiles may be subjected to a mechanical process such as machining with the mold in place to provide mechanical support for the tiles. A layer of CMC material is then applied to bond the tiles and the CMC material together into a hybrid structure. The mold may include a fugitive material portion (26) to facilitate removal of the mold when the hybrid structure has a complex shape. Tiles located in different regions of the structure may have different compositions and/or dimensions. The gaps between adjacent tiles may be filled from the outside before the CMC material is applied or from the inside after the mold is removed.
    Type: Application
    Filed: January 29, 2004
    Publication date: October 28, 2004
    Applicant: Siemens Westinghouse Power Corporation
    Inventors: Jay A. Morrison, Gary B. Merrill, Michael A. Burke, Jay Edgar Lane, Steven James Vance
  • Patent number: 6709230
    Abstract: A hybrid vane (50) for a gas turbine engine having a ceramic matrix composite (CMC) airfoil member (52) bonded to a substantially solid core member (54). The airfoil member and core member are cooled by a cooling fluid (58) passing through cooling passages (56) formed in the core member. The airfoil member is cooled by conductive heat transfer through the bond ((70) between the core member and the airfoil member and by convective heat transfer at the surface directly exposed to the cooling fluid. A layer of insulation (72) bonded to the external surface of the airfoil member provides both the desired outer aerodynamic contour and reduces the amount of cooling fluid required to maintain the structural integrity of the airfoil member. Each member of the hybrid vane is formulated to have a coefficient of thermal expansion and elastic modulus that will minimize thermal stress during fabrication and during turbine engine operation.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: March 23, 2004
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Jay A. Morrison, Chris Campbell, Gary Brian Merrill, Jay Edgar Lane, Daniel George Thompson, Harry A. Albrecht, Yevgeniy P. Shteyman
  • Publication number: 20040028941
    Abstract: An alumina comprising composition protective overlayer (20) for protecting a ceramic matrix composite material (12) from a high temperature, moisture-containing environment. Alumina may be used as a protective overlayer to protect an underlying mullite layer to temperatures in excess of 1,500° C. The coating may have porosity of greater than 15% for improved thermal shock protection. To prevent the ingress of oxygen to an underlying ceramic material, an oxide barrier layer may be optionally disposed between the alumina coating and the ceramic material. Such a protective overlayer may be used for an article having a ceramic oxide or non-oxide substrate.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 12, 2004
    Applicant: Siemens Westinghouse Power Corporation
    Inventors: Jay Edgar Lane, Gary Brian Merrill
  • Publication number: 20030223861
    Abstract: A hybrid vane (50) for a gas turbine engine having a ceramic matrix composite (CMC) airfoil member (52) bonded to a substantially solid core member (54). The airfoil member and core member are cooled by a cooling fluid (58) passing through cooling passages (56) formed in the core member. The airfoil member is cooled by conductive heat transfer through the bond ((70) between the core member and the airfoil member and by convective heat transfer at the surface directly exposed to the cooling fluid. A layer of insulation (72) bonded to the external surface of the airfoil member provides both the desired outer aerodynamic contour and reduces the amount of cooling fluid required to maintain the structural integrity of the airfoil member. Each member of the hybrid vane is formulated to have a coefficient of thermal expansion and elastic modulus that will minimize thermal stress during fabrication and during turbine engine operation.
    Type: Application
    Filed: May 31, 2002
    Publication date: December 4, 2003
    Applicant: Siemens Westinghouse Power Corporation
    Inventors: Jay A. Morrison, Chris Campbell, Gary Brian Merrill, Jay Edgar Lane, Daniel George Thompson, Harry A. Albrecht, Yevgeniy P. Shteyman
  • Publication number: 20030080477
    Abstract: A method for making a thermal insulating material includes the steps of: providing a chamber, placing hollow geometric shapes in the chamber, closing the chamber, evacuating air from the chamber, feeding a slurry into an adjacent slurry chamber, pressurizing the slurry chamber and forcing the slurry in to the sphere chamber around the spheres against a fibrous material adjacent a side wall of the sphere chamber. The fibrous material allows capillary wicking of the liquid from the slurry around the spheres. Due to this pressure the spheres and slurry are semi dried into a green state. The material in its green state green is subsequently dried and fired to form the insulating material.
    Type: Application
    Filed: September 27, 2001
    Publication date: May 1, 2003
    Applicant: Siemans Westinghouse Power Corporation
    Inventors: Gary Brian Merrill, Jay Edgar Lane, Curtis Gosik
  • Patent number: 6197424
    Abstract: A ceramic composition for insulating components, made of ceramic matrix composites, of gas turbines is provided. The composition comprises a plurality of hollow oxide-based spheres of various dimensions, a phosphate binder, and at least one oxide filler powder, whereby the phosphate binder partially fills gaps between the spheres and the filler powders. The spheres are situated in the phosphate binder and the filler powders such that each sphere is in contact with at least one other sphere and the arrangement of spheres is such that the composition is dimensionally stable and chemically stable at a temperature of approximately 1600° C. A stationary vane of a gas turbine comprising the composition of the present invention bonded to the outer surface of the vane is provided. A combustor comprising the composition bonded to the inner surface of the combustor is provided. A transition duct comprising the insulating coating bonded to the inner surface of the transition is provided.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: March 6, 2001
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Jay Alan Morrison, Gary Brian Merrill, Evan McNeil Ludeman, Jay Edgar Lane
  • Patent number: 5854154
    Abstract: An oxide ceramic composite suitable for fabricating components of combustion turbines and similar high temperature environments. The composite is fabricated by dispersing metal particles in a fiber preform and infiltrating the fiber preform with sol-gel matrix precursor material. Alternatively, the metal particles are mixed into the sol-gel matrix precursor material and the preform is infiltrated with the mixture. Later in the fabrication process, the metal particles oxidize and become oxidized metal when the sol-gel matrix precursor material is sintered. The oxidized metal has more volume and mass than the metal particles. As a result, the oxidized metal contributes to increasing the density of the composite so that it is suitable for use in combustion turbines and similar high temperature environments.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: December 29, 1998
    Assignee: Westinghouse Electric Corporation
    Inventors: Kenneth Charles Radford, Jay Edgar Lane