Patents by Inventor Jay Kenneth Fisher

Jay Kenneth Fisher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230399686
    Abstract: The invention provides a system and methods of multiplexed, solid-phase isothermal nucleic acid amplification. In various aspects, the invention uses a microfluidic device that includes a field of actuatable microposts in a reaction (or assay) chamber to enhance fluid flow, mixing, and hybridization/capture efficiency in a solid-phase capture assay. In various other aspects, the invention uses oligonucleotide primers immobilized in a field of actuatable microposts in a reaction chamber of a microfluidics device for capture and amplification of target-specific nucleic acids in a sample fluid. The invention provides methods of producing a micropost field (array) on a substrate for printing of a capture array (e.g., an array of primer spots). The invention also provides methods of printing an array of capture spots (e.g., primer spots) on the substrate surface of a micropost field.
    Type: Application
    Filed: October 27, 2021
    Publication date: December 14, 2023
    Applicant: Redbud Labs, Inc.
    Inventors: Jay Kenneth FISHER, Katelyn Rose KREMER, Adam DENGLER
  • Publication number: 20230257689
    Abstract: A microscale bioreactor system for and method is disclosed for providing improved cell culture growth conditions in a small-volume vessel. For example, a microbioreactor system is provided that may include a small-volume vessel and wherein the small-volume vessel may include a field of actuatable surface-attached microposts. Further, the microbioreactor system may include an actuation mechanism for actuating the surface-attached microposts into movement. In some embodiments, the surface-attached microposts may be functionalized with, for example, activation signals for converting standard T-cells in a growth media to activated T-cells. Further, a method of using the microbioreactor system for providing cell culture growth conditions including enhanced oxygenation and nutrients distribution in a small-volume vessel is provided.
    Type: Application
    Filed: July 7, 2021
    Publication date: August 17, 2023
    Applicant: Redbud Labs, Inc.
    Inventors: Travis Gurney, Jay Kenneth Fisher, Brittany MASON, Richard Chasen Spero
  • Publication number: 20230166254
    Abstract: Modular active surface devices for micro fluidic systems and methods of making same is disclosed. In one example, the modular active surface device includes an active surface layer mounted atop an active surface substrate, a mask mounted atop the active surface layer wherein the mask defines the area, height, and volume of the reaction chamber, and a substrate mounted atop the mask wherein the substrate provides the facing surface to the active surface layer. In other examples, both facing surfaces of the reaction chamber include active surface layers. Further, the modular active surface device can include other layers, such as, but not limited to, adhesive layers, stiffening layers for facilitating handling, and peel-off sealing layers. Further, a large-scale manufacturing method is provided of mass-producing the modular active surface devices. Further, a method is provided of using a plasma bonding process to bond the active surface layer to the active surface substrate.
    Type: Application
    Filed: December 28, 2022
    Publication date: June 1, 2023
    Applicant: Redbud Labs, Inc.
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Laura Lee Tormey
  • Patent number: 11571694
    Abstract: Modular active surface devices for microfluidic systems and methods of making same is disclosed. In one example, the modular active surface device includes an active surface layer mounted atop an active surface substrate, a mask mounted atop the active surface layer wherein the mask defines the area, height, and volume of the reaction chamber, and a substrate mounted atop the mask wherein the substrate provides the facing surface to the active surface layer. In other examples, both facing surfaces of the reaction chamber include active surface layers. Further, the modular active surface device can include other layers, such as, but not limited to, adhesive layers, stiffening layers for facilitating handling, and peel-off sealing layers. Further, a large-scale manufacturing method is provided of mass-producing the modular active surface devices. Further, a method is provided of using a plasma bonding process to bond the active surface layer to the active surface substrate.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 7, 2023
    Assignee: REDBUD LABS, INC.
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Laura Lee Tormey
  • Publication number: 20230033473
    Abstract: A system, mixing-enhanced microfluidic container, and methods for small volume sample collection and/or analysis is disclosed. Namely, the invention is directed to a small volume sample collection system that includes a mixing-enhanced microfluidic container and a durable reusable actuation chuck. The mixing-enhanced microfluidic container is used to collect small volumes of sample fluid and includes a means for mixing the sample fluid with reagents disposed within the microfluidic container. The mixing means utilize an array of surface-attached structures (e.g., a micropost array). The application of an “actuation force,” such as a magnetic or electric field, actuates the surface-attached structures into movement, wherein the actuation chuck in close proximity to the mixing-enhanced microfluidic container provides the “actuation force.
    Type: Application
    Filed: October 10, 2022
    Publication date: February 2, 2023
    Applicants: Redbud Labs, Inc., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Publication number: 20220401950
    Abstract: Magnetic-based actuation mechanisms for and methods of actuating magnetically-responsive microposts in a reaction (or assay) chamber is disclosed. For example, a microfluidics system is provided that includes a microfluidics device (or cartridge) that includes the reaction (or assay) chamber in which a field of magnetically-responsive surface-attached microposts is installed. The presently disclosed magnetic-based actuation mechanisms are provided in close proximity to the magnetically-responsive microposts wherein the magnetic-based actuation mechanisms are used for actuating the magnetically-responsive microposts. For example, the magnetic-based actuation mechanisms generate an actuation force that is used to induce, for example, synchronized beat patterns and/or metachronal beat patterns in the magnetically-responsive microposts. Additionally, a method of using the presently disclosed magnetic-based actuation mechanisms for actuating the magnetically-responsive microposts is provided.
    Type: Application
    Filed: November 16, 2020
    Publication date: December 22, 2022
    Applicant: Redbud Labs, Inc.
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher
  • Publication number: 20220395834
    Abstract: A microfluidic device for and methods of using surface-attached posts and capture beads in a microfluidic chamber is disclosed. For example, the microfluidics device includes a pair of substrates separated by a gap and thereby forming a reaction (or assay) chamber therebetween. A field of actuatable surface-attached posts (e.g., magnetically responsive microposts) is provided on one or both of the substrates. The surface-attached posts are functionalized with capture beads. Additionally, methods are provided of functionalizing the surface-attached posts with the capture beads. Additionally, methods are provided of using the surface-attached posts that are functionalized with capture beads in a microfluidics device for binding a target of interest. Further, a bead spraying system and method is provided for spraying magnetically responsive and/or non-magnetically responsive beads atop and/or among a field of surface-attached microposts for use in a microfluidic device.
    Type: Application
    Filed: November 16, 2020
    Publication date: December 15, 2022
    Applicant: Redbud Labs, Inc.
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Dale Barnes, Olivia Kanies
  • Publication number: 20220387993
    Abstract: Active surface devices for and methods of providing dried reagents in microfluidic applications is disclosed. In one example, the active surface devices include one or more dried reagent spots in relation to an active surface in the reaction (or assay) chamber thereof. In another example, the active surface devices include a dried reagent coating on the surfaces of the reaction (or assay) chamber including the active surface. In one example, the presently disclosed active surface devices are micropost-based active surface devices for providing active mixing therein. Further, a method of forming a dried reagent spot in the active surface devices is provided. Further, a method of forming a dried reagent coating in the active surface devices is provided. Further, a method of using the active surface devices for providing dried reagents in microfluidic applications is provided.
    Type: Application
    Filed: November 2, 2020
    Publication date: December 8, 2022
    Applicants: Redbud Labs, Inc., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Patent number: 11465146
    Abstract: A system, mixing-enhanced microfluidic container, and methods for small volume sample collection and/or analysis is disclosed. Namely, the invention is directed to a small volume sample collection system that includes a mixing-enhanced microfluidic container and a durable reusable actuation chuck. The mixing-enhanced microfluidic container is used to collect small volumes of sample fluid and includes a means for mixing the sample fluid with reagents disposed within the microfluidic container. The mixing means utilize an array of surface-attached structures (e.g., a micropost array). The application of an “actuation force,” such as a magnetic or electric field, actuates the surface-attached structures into movement, wherein the actuation chuck in close proximity to the mixing-enhanced microfluidic container provides the “actuation force.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: October 11, 2022
    Assignees: Redbud Labs, Inc., The University of North Carolina at Chapel Hill
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Publication number: 20220146510
    Abstract: Methods of surface modification of silicones for specific target and high efficiency binding are disclosed. Namely, surface-attached microposts and methods of functionalizing the surface-attached microposts for target-specific analyte capture are provided. For example, a microposts processing platform is provided that is based on a microfluidic flow cell structure that includes a reaction (or assay) chamber. The method utilizes the microposts processing platform that includes an arrangement of surface-attached microposts on at least one surface of the reaction (or assay) chamber. Methods of functionalizing the surface-attached microposts include one or more steps, wherein the incorporation of one or more functionalizing agents are used to provide a micropost surface for target-specific analyte capture.
    Type: Application
    Filed: April 17, 2020
    Publication date: May 12, 2022
    Applicant: Redbud Labs, Inc.
    Inventors: Jay Kenneth Fisher, Katelyn Rose Kremer
  • Publication number: 20220080423
    Abstract: A cell processing system, fluidics cartridge, and methods for using actuated surface-attached posts for processing cells are disclosed. Particularly, the cell processing system includes a fluidics cartridge and a control instrument. The fluidics cartridge includes a cell processing chamber that has a micropost array therein, a sample reservoir and a wash reservoir that supply the cell processing chamber, and a waste reservoir and an eluent reservoir at the output of the cell processing chamber. A micropost actuation mechanism and a cell counting mechanism are provided in close proximity to the cell processing chamber. A method is provided of using the cell processing system to collect, wash, and recover cells. Another method is provided of using the cell processing system to collect, wash, count, and recover cells at a predetermined cell density.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Applicants: Redbud Labs, Inc., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Patent number: 11179723
    Abstract: A cell processing system, fluidics cartridge, and methods for using actuated surface-attached posts for processing cells are disclosed. Particularly, the cell processing system includes a fluidics cartridge and a control instrument. The fluidics cartridge includes a cell processing chamber that has a micropost array therein, a sample reservoir and a wash reservoir that supply the cell processing chamber, and a waste reservoir and an eluent reservoir at the output of the cell processing chamber. A micropost actuation mechanism and a cell counting mechanism are provided in close proximity to the cell processing chamber. A method is provided of using the cell processing system to collect, wash, and recover cells. Another method is provided of using the cell processing system to collect, wash, count, and recover cells at a predetermined cell density.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: November 23, 2021
    Assignees: REDBUD LABS, INC., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Publication number: 20210316303
    Abstract: A flow cell is provided that includes surface-attached structures in a chamber. The structures are movable in response to a magnetic or electric field. A target extraction or isolation system includes the flow cell and a driver configured for applying a magnetic or electric field to the interior of the flow cell to actuate movement of the structures. The flow cell may be utilized to extract or isolate a target from a sample flowing through the flow cell. Further, a microfluidic system is provided that includes surface-attached structures and a microarray, wherein actuated motion of the surface-attached structures is used to enhance flow, circulation, and/or mixing action for analyte capture on the microarray.
    Type: Application
    Filed: February 16, 2021
    Publication date: October 14, 2021
    Applicants: Redbud Labs, Inc., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Publication number: 20210220827
    Abstract: A flow cell is provided that includes surface-attached structures in a chamber. The structures are movable in response to an actuation force. The flow cell may be utilized to extract or isolate nucleic acids from a sample flowing through the flow cell, wherein some portion of the flow cell comprises nucleic acid adsorbent material (e.g. the outer surface of the surface-attached structures, an inside surface of the chamber of the flow cell, beads attached to the outer surface of the surface-attached structures, or beads integrated into the outer surface of the surface-attached structures). Further, systems and methods for extraction of nucleic acids using such flow cells are also provided.
    Type: Application
    Filed: May 6, 2019
    Publication date: July 22, 2021
    Applicants: Redbud Labs, Inc., THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Patent number: 10919036
    Abstract: A flow cell is provided that includes surface-attached structures in a chamber. The structures are movable in response to a magnetic or electric field. A target extraction or isolation system includes the flow cell and a driver configured for applying a magnetic or electric field to the interior of the flow cell to actuate movement of the structures. The flow cell may be utilized to extract or isolate a target from a sample flowing through the flow cell. Further, a microfluidic system is provided that includes surface-attached structures and a microarray, wherein actuated motion of the surface-attached structures is used to enhance flow, circulation, and/or mixing action for analyte capture on the microarray.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: February 16, 2021
    Assignees: REDBUD LABS, INC., The University of North Carolina at Chapel Hill
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Publication number: 20210039096
    Abstract: Magnetic-based actuation mechanisms for and methods of actuating magnetically responsive microposts in a reaction (or assay) chamber is disclosed. Namely, a microfluidics system is provided that includes a microfluidics device (or cartridge) that includes the reaction (or assay) chamber in which a field of surface-attached magnetically responsive microposts is installed. The presently disclosed magnetic-based actuation mechanisms are provided in close proximity to the magnetically responsive microposts wherein the magnetic-based actuation mechanisms are used for actuating the magnetically responsive microposts. Namely, the magnetic-based actuation mechanisms generate an actuation force that is used to compel at least some of the magnetically responsive microposts to exhibit motion. Additionally, methods of using the presently disclosed magnetic-based actuation mechanisms for actuating the magnetically responsive microposts are provided.
    Type: Application
    Filed: April 7, 2019
    Publication date: February 11, 2021
    Applicant: Redbud Labs, Inc.
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher
  • Patent number: 10900896
    Abstract: A flow cell is provided that includes surface-attached structures in a chamber. The structures are movable in response to a magnetic or electric field. A target extraction or isolation system includes the flow cell and a driver configured for applying a magnetic or electric field to the interior of the flow cell to actuate movement of the structures. The flow cell may be utilized to extract or isolate a target from a sample flowing through the flow cell. Further, a microfluidic system is provided that includes surface-attached structures and a microarray, wherein actuated motion of the surface-attached structures is used to enhance flow, circulation, and/or mixing action for analyte capture on the microarray.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: January 26, 2021
    Assignee: REDBUD LABS, INC.
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Publication number: 20200368747
    Abstract: A cell processing system, fluidics cartridge, and methods for using actuated surface-attached posts for processing cells are disclosed. Particularly, the cell processing system includes a fluidics cartridge and a control instrument. The fluidics cartridge includes a cell processing chamber that has a micropost array therein, a sample reservoir and a wash reservoir that supply the cell processing chamber, and a waste reservoir and an eluent reservoir at the output of the cell processing chamber. A micropost actuation mechanism and a cell counting mechanism are provided in close proximity to the cell processing chamber. A method is provided of using the cell processing system to collect, wash, and recover cells. Another method is provided of using the cell processing system to collect, wash, count, and recover cells at a predetermined cell density.
    Type: Application
    Filed: March 23, 2018
    Publication date: November 26, 2020
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Publication number: 20200254456
    Abstract: A cell processing system, fluidics cartridge, and methods for using actuated surface-attached posts for processing cells are disclosed. Particularly, the cell processing system includes a fluidics cartridge and a control instrument. The fluidics cartridge includes a cell processing chamber that has a micropost array therein, a sample reservoir and a wash reservoir that supply the cell processing chamber, and a waste reservoir and an eluent reservoir at the output of the cell processing chamber. A micropost actuation mechanism and a cell counting mechanism are provided in close proximity to the cell processing chamber. A method is provided of using the cell processing system to collect, wash, and recover cells. Another method is provided of using the cell processing system to collect, wash, count, and recover cells at a predetermined cell density.
    Type: Application
    Filed: March 23, 2018
    Publication date: August 13, 2020
    Applicant: Redbud Labs, Inc.
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Richard Superfine
  • Publication number: 20200254454
    Abstract: Modular active surface devices for microfluidic systems and methods of making same is disclosed. In one example, the modular active surface device includes an active surface layer mounted atop an active surface substrate, a mask mounted atop the active surface layer wherein the mask defines the area, height, and volume of the reaction chamber, and a substrate mounted atop the mask wherein the substrate provides the facing surface to the active surface layer. In other examples, both facing surfaces of the reaction chamber include active surface layers. Further, the modular active surface device can include other layers, such as, but not limited to, adhesive layers, stiffening layers for facilitating handling, and peel-off sealing layers. Further, a large-scale manufacturing method is provided of mass-producing the modular active surface devices. Further, a method is provided of using a plasma bonding process to bond the active surface layer to the active surface substrate.
    Type: Application
    Filed: June 19, 2018
    Publication date: August 13, 2020
    Applicant: Redbud Labs, Inc.
    Inventors: Richard Chasen Spero, Jay Kenneth Fisher, Laura Lee Tormey