Patents by Inventor Jay L. Kelley
Jay L. Kelley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12048480Abstract: A method and system for mapping tissue and producing lesions for the treatment of cardiac arrhythmias in a non-thermal and optimal manner, minimizing the amount of energy required to selectively stun or ablate the target tissues. Energy may be delivered only at the moment(s) of best device position and proximity of an electrode to target tissue, and only during a time in the cardiac cycle determined to be optimal for reversible or irreversible effects. A method may include determining timing of the cardiac cycle and an optimal time within the cardiac cycle for energy delivery, evaluating proximity between at least one energy delivery electrode and the target tissue, and delivering pulsed field energy from the at least one energy delivery electrode to the target tissue when, during the optimal time for energy delivery, the at least one energy delivery electrode is in close proximity with the target tissue.Type: GrantFiled: May 17, 2021Date of Patent: July 30, 2024Assignee: Medtronic Ablation Frontiers LLCInventors: Mark T. Stewart, Catherine R. Condie, Jay L. Kelley
-
Patent number: 11648042Abstract: A method, system and device for securing conductive material on catheter elements for tissue sensing and cryogenic ablation. This may be used to deposit or embed conductive material onto or within polymeric materials. The method of manufacturing a balloon with conductive material may include extruding a polymeric material where the polymeric material includes embedded electrically conductive material. At least a portion of the polymeric material may be removed to expose at least a portion of the embedded electrically conductive material. The benefits may include allowing local bipolar recordings, contact assessment and ice thickness, and compatibility with 3-dimensional electroanatomical mapping systems.Type: GrantFiled: February 5, 2018Date of Patent: May 16, 2023Assignee: Medtronic CryoCath LPInventor: Jay L. Kelley
-
Publication number: 20210338303Abstract: A device, system, and method for performing a variety of treatment procedures safely with a single treatment device. For example, a system is provided that includes a treatment device with a highly conformable balloon that is inflated at a constant pressure and that remains “soft” during use, which enhances balloon-tissue contact, treatment efficacy, and patient safety. In one embodiment, a system for ablating tissue comprises: a treatment device including a highly conformable balloon; a control unit including a fluid supply reservoir in fluid communication with the highly conformable balloon, the control unit being configured to deliver fluid from the fluid supply reservoir to the highly conformable balloon such that the highly conformable balloon is maintained at a balloon pressure of between 0.2 psig and 3.0 psig.Type: ApplicationFiled: July 14, 2021Publication date: November 4, 2021Inventors: Jean-Pierre LALONDE, Scott A. HARELAND, Jay L. KELLEY, Rachid MAHROUCHE, Wlodzimierz SADZYNSKI, Megan M. SCHMIDT, Bertin SIMEON, Vladimir TZONEV
-
Publication number: 20210267677Abstract: A method and system for mapping tissue and producing lesions for the treatment of cardiac arrhythmias in a non-thermal and optimal manner, minimizing the amount of energy required to selectively stun or ablate the target tissues. Energy may be delivered only at the moment(s) of best device position and proximity of an electrode to target tissue, and only during a time in the cardiac cycle determined to be optimal for reversible or irreversible effects. A method may include determining timing of the cardiac cycle and an optimal time within the cardiac cycle for energy delivery, evaluating proximity between at least one energy delivery electrode and the target tissue, and delivering pulsed field energy from the at least one energy delivery electrode to the target tissue when, during the optimal time for energy delivery, the at least one energy delivery electrode is in close proximity with the target tissue.Type: ApplicationFiled: May 17, 2021Publication date: September 2, 2021Inventors: Mark T. STEWART, Catherine R. CONDIE, Jay L. KELLEY
-
Patent number: 11090101Abstract: A device, system, and method for performing a variety of treatment procedures safely with a single treatment device. For example, a system is provided that includes a treatment device with a highly conformable balloon that is inflated at a constant pressure and that remains “soft” during use, which enhances balloon-tissue contact, treatment efficacy, and patient safety. In one embodiment, a system for ablating tissue comprises: a treatment device including a highly conformable balloon; a control unit including a fluid supply reservoir in fluid communication with the highly conformable balloon, the control unit being configured to deliver fluid from the fluid supply reservoir to the highly conformable balloon such that the highly conformable balloon is maintained at a balloon pressure of between 0.2 psig and 3.0 psig.Type: GrantFiled: May 2, 2018Date of Patent: August 17, 2021Assignee: Medtronic CryoCath LPInventors: Jean-Pierre Lalonde, Scott A. Hareland, Jay L. Kelley, Rachid Mahrouche, Wlodzimierz Sadzynski, Megan M. Schmidt, Bertin Simeon, Vladimir Tzonev
-
Patent number: 11033329Abstract: A method and system for mapping tissue and producing lesions for the treatment of cardiac arrhythmias in a non-thermal and optimal manner, minimizing the amount of energy required to selectively stun or ablate the target tissues. Energy may be delivered only at the moment(s) of best device position and proximity of an electrode to target tissue, and only during a time in the cardiac cycle determined to be optimal for reversible or irreversible effects. A method may include determining timing of the cardiac cycle and an optimal time within the cardiac cycle for energy delivery, evaluating proximity between at least one energy delivery electrode and the target tissue, and delivering pulsed field energy from the at least one energy delivery electrode to the target tissue when, during the optimal time for energy delivery, the at least one energy delivery electrode is in close proximity with the target tissue.Type: GrantFiled: March 20, 2019Date of Patent: June 15, 2021Assignee: Medtronic Ablation Frontiers LLCInventors: Mark T. Stewart, Catherine R. Condie, Jay L. Kelley
-
Publication number: 20190336192Abstract: A device, system, and method for performing a variety of treatment procedures safely with a single treatment device. For example, a system is provided that includes a treatment device with a highly conformable balloon that is inflated at a constant pressure and that remains “soft” during use, which enhances balloon-tissue contact, treatment efficacy, and patient safety. In one embodiment, a system for ablating tissue comprises: a treatment device including a highly conformable balloon; a control unit including a fluid supply reservoir in fluid communication with the highly conformable balloon, the control unit being configured to deliver fluid from the fluid supply reservoir to the highly conformable balloon such that the highly conformable balloon is maintained at a balloon pressure of between 0.2 psig and 3.0 psig.Type: ApplicationFiled: May 2, 2018Publication date: November 7, 2019Inventors: Jean-Pierre LALONDE, Scott A. HARELAND, Jay L. KELLEY, Rachid MAHROUCHE, Wlodzimierz SADZYNSKI, Megan M. SCHMIDT, Bertin SIMEON, Vladimir TZONEV
-
Publication number: 20190216525Abstract: A method and system for mapping tissue and producing lesions for the treatment of cardiac arrhythmias in a non-thermal and optimal manner, minimizing the amount of energy required to selectively stun or ablate the target tissues. Energy may be delivered only at the moment(s) of best device position and proximity of an electrode to target tissue, and only during a time in the cardiac cycle determined to be optimal for reversible or irreversible effects. A method may include determining timing of the cardiac cycle and an optimal time within the cardiac cycle for energy delivery, evaluating proximity between at least one energy delivery electrode and the target tissue, and delivering pulsed field energy from the at least one energy delivery electrode to the target tissue when, during the optimal time for energy delivery, the at least one energy delivery electrode is in close proximity with the target tissue.Type: ApplicationFiled: March 20, 2019Publication date: July 18, 2019Inventors: Mark T. STEWART, Catherine R. CONDIE, Jay L. KELLEY
-
Patent number: 10271893Abstract: A method and system for mapping tissue and producing lesions for the treatment of cardiac arrhythmias in a non-thermal and optimal manner, minimizing the amount of energy required to selectively stun or ablate the target tissues. Energy may be delivered only at the moment(s) of best device position and proximity of an electrode to target tissue, and only during a time in the cardiac cycle determined to be optimal for reversible or irreversible effects. A method may include determining timing of the cardiac cycle and an optimal time within the cardiac cycle for energy delivery, evaluating proximity between at least one energy delivery electrode and the target tissue, and delivering pulsed field energy from the at least one energy delivery electrode to the target tissue when, during the optimal time for energy delivery, the at least one energy delivery electrode is in close proximity with the target tissue.Type: GrantFiled: March 20, 2015Date of Patent: April 30, 2019Assignee: Medtronic Ablation Frontiers LLCInventors: Mark T. Stewart, Catherine R. Condie, Jay L. Kelley
-
Publication number: 20180221077Abstract: A method, system and device for securing conductive material on catheter elements for tissue sensing and cryogenic ablation. This may be used to deposit or embed conductive material onto or within polymeric materials. The method of manufacturing a balloon with conductive material may include extruding a polymeric material where the polymeric material includes embedded electrically conductive material. At least a portion of the polymeric material may be removed to expose at least a portion of the embedded electrically conductive material. The benefits may include allowing local bipolar recordings, contact assessment and ice thickness, and compatibility with 3-dimensional electroanatomical mapping systems.Type: ApplicationFiled: February 5, 2018Publication date: August 9, 2018Inventor: Jay L. KELLEY
-
Publication number: 20160166310Abstract: A method and system for mapping tissue and producing lesions for the treatment of cardiac arrhythmias in a non-thermal and optimal manner, minimizing the amount of energy required to selectively stun or ablate the target tissues. Energy may be delivered only at the moment(s) of best device position and proximity of an electrode to target tissue, and only during a time in the cardiac cycle determined to be optimal for reversible or irreversible effects. A method may include determining timing of the cardiac cycle and an optimal time within the cardiac cycle for energy delivery, evaluating proximity between at least one energy delivery electrode and the target tissue, and delivering pulsed field energy from the at least one energy delivery electrode to the target tissue when, during the optimal time for energy delivery, the at least one energy delivery electrode is in close proximity with the target tissue.Type: ApplicationFiled: March 20, 2015Publication date: June 16, 2016Inventors: Mark T. STEWART, Catherine R. CONDIE, Jay L. KELLEY
-
Publication number: 20130288218Abstract: A resilient model of a heart's atria and associated vasculature is disclosed. The model is generated from CT scans of patients' with varying cardiac anatomies. The model is connected to a temperature-controlled fluid reservoir and a pump that periodically circulates fluid through the cardiac model. The model provides a visual indication of temperature change. The model may be used to simulate endocardial procedures such as pulmonary vein isolation for treatment of atrial fibrillation.Type: ApplicationFiled: January 30, 2013Publication date: October 31, 2013Applicant: MEDTRONIC CRYOCATH LPInventors: George D. Mallin, Jay L. Kelley, Christopher D. Rolfes, Alexander T. Ryan