Patents by Inventor Jay L. Reimers

Jay L. Reimers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180058764
    Abstract: This invention relates to a process for forming polymer including: polymerizing a monomer dissolved in a solvent in the presence of a catalyst system under conditions to obtain a first effluent stream including a solution of the polymer and the solvent; heating the first effluent stream in at least one spiral heat exchanger to produce a second effluent stream, where the first effluent stream flows through the spiral heat exchanger in a cross-flow direction relative to spirals of the spiral heat exchanger and performing a separation on the second effluent stream to produce: a third effluent stream including polymer substantially free of the solvent; and a recycle stream including the solvent and unreacted monomer. Processes for devolatilizing a polymer stream are also provided herein.
    Type: Application
    Filed: July 11, 2017
    Publication date: March 1, 2018
    Inventors: Yifeng Hong, Jay L. Reimers
  • Publication number: 20180044453
    Abstract: Disclosed is a solution polymerization process, or, alternatively, a method of delivering powder catalysts to a solution polymerization reactor, comprising combining a homogeneous single-site catalyst precursor with ?-olefin monomers to form a polyolefin, wherein the homogeneous single-site catalyst precursor is in the form of (i) a dry powder, (ii) suspended in a aliphatic hydrocarbon solvent, or (iii) suspended in an oil or wax, wherein the homogeneous single-site catalyst precursor is at a concentration greater than 0.8 mmole/liter when suspended in the aliphatic hydrocarbon solvent prior to entering the solution polymerization reactor.
    Type: Application
    Filed: July 10, 2017
    Publication date: February 15, 2018
    Inventors: Peijun Jiang, Robert T. Li, Jay L. Reimers
  • Publication number: 20180030177
    Abstract: This disclosure describes polymerization processes and processes for quenching polymerization reactions using high molecular weight polyhydric quenching agents.
    Type: Application
    Filed: July 5, 2017
    Publication date: February 1, 2018
    Inventors: Jay L. Reimers, Brian R. Greenhalgh
  • Patent number: 9815913
    Abstract: Described herein are methods for continuous solution polymerization. The method may comprise polymerizing one or more monomers and comonomers in the presence of a solvent in a polymerization reactor to produce a polymer solution; determining the composition of the polymer solution exiting the polymerization reactor in an on-line fashion; determining at least one of the critical pressure or critical temperature; comparing the critical pressure and/or critical temperature to the actual temperature of the polymer solution and the actual pressure of the polymer solution; heating or cooling the polymer solution to a temperature within 50° C. of the critical temperature; and passing the polymer solution through a pressure letdown valve into a liquid-liquid separator, where the pressure of the polymer solution is reduced or raised to a pressure within 50 psig of the critical pressure to induce a separation of the polymer solution into two liquid phases.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: November 14, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Quintin P. W. Costin, Philip M. Duvall, Jay L. Reimers
  • Publication number: 20170298154
    Abstract: This disclosure describes processes for producing polymer using non-polar and condensable stripping agents to remove volatile components, such as solvent and unreacted monomer, from the produced polymer. Systems for performing these processes are also disclosed.
    Type: Application
    Filed: March 1, 2017
    Publication date: October 19, 2017
    Inventor: Jay L. Reimers
  • Patent number: 9708428
    Abstract: This invention relates to a polymerization process for forming polymer comprising: contacting (typically in a solution or slurry phase), a monomer and a catalyst system in a reaction zone comprising at least one spiral heat exchanger and recovering polymer, wherein the monomer, the catalyst system and the polymer flow through the at least one spiral heat exchanger in a cross-flow direction relative to spirals of the at least one spiral heat exchanger.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: July 18, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jay L Reimers, Kevin W. Lawson, Peijun Jiang, Gabor Kiss
  • Publication number: 20170088647
    Abstract: This invention relates to a polymerization process for forming polymer comprising: contacting (typically in a solution or slurry phase), a monomer and a catalyst system in a reaction zone comprising at least one spiral heat exchanger and recovering polymer, wherein the monomer, the catalyst system and the polymer flow through the at least one spiral heat exchanger in a cross-flow direction relative to spirals of the at least one spiral heat exchanger.
    Type: Application
    Filed: August 19, 2016
    Publication date: March 30, 2017
    Inventors: Jay L. Reimers, Kevin W. Lawson, Peijun Jiang, Gabor Kiss
  • Publication number: 20160362506
    Abstract: Described herein are methods for continuous solution polymerization. The method may comprise polymerizing one or more monomers and comonomers in the presence of a solvent in a polymerization reactor to produce a polymer solution; determining the composition of the polymer solution exiting the polymerization reactor in an on-line fashion; determining at least one of the critical pressure or critical temperature; comparing the critical pressure and/or critical temperature to the actual temperature of the polymer solution and the actual pressure of the polymer solution; heating or cooling the polymer solution to a temperature within 50° C. of the critical temperature; and passing the polymer solution through a pressure letdown valve into a liquid-liquid separator, where the pressure of the polymer solution is reduced or raised to a pressure within 50 psig of the critical pressure to induce a separation of the polymer solution into two liquid phases.
    Type: Application
    Filed: May 2, 2016
    Publication date: December 15, 2016
    Inventors: Quintin P. W. Costin, Philip M. Duvall, Jay L. Reimers
  • Patent number: 9389161
    Abstract: This invention relates to a method for the determination of the average particle size or particle size distribution of a material in a gas phase reactor comprising: 1) analyzing the average particle size and particle size distribution of a baseline composition using the method described in ASTM D1921; 2) analyzing the average particle size and particle size distribution of said baseline composition using an FT-NIR analysis technique; 3) preparing a calibration matrix by comparing results from said reference analytical technique to the results from said FT-NIR analysis technique; 4) analyzing the material using an FT-NIR technique; and 5) identifying and quantifying the type and content of particles present in the material by comparing spectral data obtained from said FT-NIR technique of the material to said calibration matrix. This invention also relates to a process for determining polymer properties in a polymerization reactor system using such techniques.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: July 12, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Jay L. Reimers
  • Patent number: 9321856
    Abstract: This invention relates to a process to produce a functionalized polymer comprising: a) contacting an iodine modified aromatic polymer with an oxidizing agent to obtain an iodonium salt of the aromatic polymer; b) contacting the iodonium salt of the aromatic polymer with a polymer having internal or terminal unsaturation(s); and c) obtaining a functionalized polymer from the polymer having internal or terminal unsaturation(s) wherein the functionalized polymer has an Mn less than the Mn of the polymer having internal or terminal unsaturation(s) and the functionalized polymer has an acid number higher than the acid number of the polymer having internal or terminal unsaturation(s).
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: April 26, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yong Yang, Jay L. Reimers
  • Publication number: 20150293005
    Abstract: This invention relates to a method for the determination of the average particle size or particle size distribution of a material in a gas phase reactor comprising: 1) analyzing the average particle size and particle size distribution of a baseline composition using the method described in ASTM D1921; 2) analyzing the average particle size and particle size distribution of said baseline composition using an FT-NIR analysis technique; 3) preparing a calibration matrix by comparing results from said reference analytical technique to the results from said FT-NIR analysis technique; 4) analyzing the material using an FT-NIR technique; and 5) identifying and quantifying the type and content of particles present in the material by comparing spectral data obtained from said FT-NIR technique of the material to said calibration matrix. This invention also relates to a process for determining polymer properties in a polymerization reactor system using such techniques.
    Type: Application
    Filed: March 5, 2015
    Publication date: October 15, 2015
    Inventor: Jay L. Reimers
  • Patent number: 9068033
    Abstract: This invention relates to inventive ethylene-based copolymers comprising 75.0 wt % to 99.5 wt % of ethylene-derived units and 0.5 wt % to 25.0 wt % of C3 to C20 olefin derived units; the inventive ethylene-based copolymer having: a density in the range of from 0.900 to less than 0.940 g/cm3; a g?(vis) of less than 0.80; a melt index, I2, of from 0.25 to 1.5 g/10 min.; a Mw/Mn within a range from 3.0 to 6.0, and Mz/Mn greater than 8.0; and an absence of a local minimum loss angle at a complex modulus, G*, of 1.00×104 to 3.00×104 Pa.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: June 30, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Fiscus, Laughlin G. McCullough, John F. Walzer, Jr., Jay L. Reimers
  • Publication number: 20150175754
    Abstract: This invention relates to a process to produce a functionalized polymer comprising: a) contacting an iodine modified aromatic polymer with an oxidizing agent to obtain an iodonium salt of the aromatic polymer; b) contacting the iodonium salt of the aromatic polymer with a polymer having internal or terminal unsaturation(s); and c) obtaining a functionalized polymer from the polymer having internal or terminal unsaturation(s) wherein the functionalized polymer has an Mn less than the Mn of the polymer having internal or terminal unsaturation(s) and the functionalized polymer has an acid number higher than the acid number of the polymer having internal or terminal unsaturation(s).
    Type: Application
    Filed: November 21, 2014
    Publication date: June 25, 2015
    Inventors: Yong Yang, Jay L. Reimers
  • Publication number: 20140179872
    Abstract: This invention relates to inventive ethylene-based copolymers comprising 75.0 wt % to 99.5 wt % of ethylene-derived units and 0.5 wt % to 25.0 wt % of C3 to C20 olefin derived units; the inventive ethylene-based copolymer having: a density in the range of from 0.900 to less than 0.940 g/cm3; a g?(vis) of less than 0.80; a melt index, I2, of from 0.25 to 1.5 g/10 min.; a Mw/Mn within a range from 3.0 to 6.0, and Mz/Mn greater than 8.0; and an absence of a local minimum loss angle at a complex modulus, G*, of 1.00×104 to 3.00×104 Pa.
    Type: Application
    Filed: November 26, 2013
    Publication date: June 26, 2014
    Inventors: David M. Fiscus, Laughlin G. McCullough, John F. Walzer, Jr., Jay L. Reimers
  • Patent number: 8076524
    Abstract: The present invention relates to a method for preparing olefin comonomers from ethylene. The comonomer generated can be used in a subsequent process, such as a polyethylene polymerization reactor. The comonomer generated can be transported, optionally without isolation or storage, to a polyethylene polymerization reactor. One method includes the steps of: feeding ethylene and a catalyst in a solvent/diluent to one or more comonomer synthesis reactors; reacting the ethylene and the catalyst under reaction conditions sufficient to produce an effluent comprising a desired comonomer; forming a gas stream comprising unreacted ethylene, and a liquid/bottoms stream comprising the comonomer, optionally by passing the effluent to one or more downstream gas/liquid phase separators; and purifying at least a portion of said liquid/bottoms stream by removing at least one of solid polymer, catalyst, and undesirable olefins therefrom.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: December 13, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, John F. Walzer, Jr., Krishnan Sankaranarayanan, John Scott Buchanan, Milind Bholanath Ajinkya, Stephen M Wood, Anastasios I Skoulidas, Jay L Reimers, Timothy Daniel Shaffer
  • Patent number: 8066954
    Abstract: A plug flow reactor having an inner shell 27 surrounded by outer shell 21 and having at least one annular flow passage 35 therebetween can be used to prepare compositions, including polymers. The plug flow reactor also includes inlet port 36, an outlet port 37 and a plurality of exchanger tubes 26 wherein the exchanger tubes are in fluid communication to the at least one annular flow passage. Polystyrene and high impact polystyrene can be prepared using the reactor.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: November 29, 2011
    Assignee: Fina Technology, Inc.
    Inventors: Thanh T. Nguyen, Jay L. Reimers
  • Publication number: 20090148351
    Abstract: A plug flow reactor having an inner shell 27 surrounded by outer shell 21 and having at least one annular flow passage 35 therebetween can be used to prepare compositions, including polymers. The plug flow reactor also includes inlet port 36, an outlet port 37 and a plurality of exchanger tubes 26 wherein the exchanger tubes are in fluid communication to the at least one annular flow passage. Polystyrene and high impact polystyrene can be prepared using the reactor.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 11, 2009
    Applicant: Fina Technology, Inc.
    Inventors: Thanh T. Nguyen, Jay L. Reimers
  • Publication number: 20090121372
    Abstract: A method and apparatus are described in which a polymer feed is pelletized by introducing the polymer feed to an extruder, removing heat from the polymer feed in the extruder, and extruding the polymer feed through a pelletizing die.
    Type: Application
    Filed: October 23, 2008
    Publication date: May 14, 2009
    Inventors: David A. Campbell, Patrick S. Byrne, Ramin Abhari, David R. Johnsrud, Jay L. Reimers
  • Patent number: 7514516
    Abstract: Disclosed are novel non-linear vinyl polymers comprised of a multifunctional peroxide, and a cross-linking agent and/or a chain transfer agent, and methods of making such polymers having: at least 0.03 branches/1000 backbone carbons; linear portions with a molecular weight (Mw) of 350,000 or less; 0.2 to 3.0 branches/molecule; or, a Mz/Mw of from 1.7 to 5.7. Methods of quantifying branching are disclosed using a linear reference having 0.0 to 0.06 branches/1000 backbone carbons along with SEC techniques and measurements of molecular weight, molecular size, and concentration. Also discovered is a vinyl polymer resin comprised of from 0.1 to 50 weight percent of non-linear polymers having at least 0.06 branches/1000 backbone carbons, where branching is measured using a heat polymerized polystyrene having from 0.0 to 0.06 branches/1000 backbone carbons as a linear reference.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: April 7, 2009
    Assignee: Fina Technology, Inc.
    Inventors: Brad Stiles, Jose M. Sosa, Cyril Chevillard, Aron Griffith, Jay L. Reimers
  • Patent number: 7511101
    Abstract: A plug flow reactor having an inner shell 27 surrounded by outer shell 21 and having at least one annular flow passage 35 therebetween can be used to prepare compositions, including polymers. The plug flow reactor also includes inlet port 36, an outlet port 37 and a plurality of exchanger tubes 26 wherein the exchanger tubes are in fluid communication to the at least one annular flow passage. Polystyrene and high impact polystyrene can be prepared using the reactor.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: March 31, 2009
    Assignee: Fina Technology, Inc.
    Inventors: Thanh T. Nguyen, Jay L. Reimers