Patents by Inventor Jay M. Fassett

Jay M. Fassett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11024936
    Abstract: Methods of RFID tag assembly include affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: June 1, 2021
    Assignee: Impinj, Inc.
    Inventors: Ronald L. Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 10116033
    Abstract: RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: October 30, 2018
    Assignee: Impinj, Inc.
    Inventors: Ronald L. Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 9317799
    Abstract: RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: April 19, 2016
    Assignee: IMPINJ, INC.
    Inventors: Ronald L. Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 8796865
    Abstract: Radio Frequency Identification (RFID) tags are provided, along with apparatuses and methods for making. In some embodiments, the RFID tags include an RFID tag chip that is attached to an inlay and/or a strap. The inlay or strap has one or more contact bumps formed thereon. In some of these embodiments, the RFID tag chip includes pads for electrical contacts, but not chip-bumps, thanks to the contact bump.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: August 5, 2014
    Assignee: Impinj, Inc.
    Inventors: Jay M. Fassett, Ronald A. Oliver, Ronald L. Koepp, Steven I. Mozsgai, Ernest Allen, III
  • Patent number: 8661652
    Abstract: RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 4, 2014
    Assignee: Impinj, Inc.
    Inventors: Ronald L. Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 8614506
    Abstract: Radio Frequency Identification (RFID) tags are provided, along with apparatuses and methods for making. In some embodiments, the RFID tags include an RFID tag chip that is attached to an inlay and/or a strap. The inlay or strap has one or more contact bumps formed thereon. In some of these embodiments, the RFID tag chip includes pads for electrical contacts, but not chip-bumps, thanks to the contact bump.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: December 24, 2013
    Assignee: Impinj, Inc.
    Inventors: Jay M. Fassett, Ernest Allen, III, Ronald L. Koepp, Ronald A. Oliver, Steven I. Mozsgai
  • Patent number: 8188927
    Abstract: RFID tags are assembled through affixing an antenna to an integrated circuit (IC) by forming one or more capacitors coupling the antenna and the IC with the dielectric material of the capacitor(s) including a non-conductive covering layer of the IC, a non-conductive covering layer of the antenna such as an oxide layer, and/or an additionally formed dielectric layer. Top and bottom plates of the capacitor(s) are formed by the antenna traces and one or more patches on a top surface of the IC.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: May 29, 2012
    Assignee: Impinj, Inc.
    Inventors: Ronald Lee Koepp, Ronald A. Oliver, William T. Colleran, Yanjun Ma, Jay M. Fassett, Vincent C. Moretti
  • Patent number: 5222250
    Abstract: A single sideband radio system. The system comprises a transmitter and a receiver. The transmitter comprises a transmitter baseband processing portion for generating a first baseband signal comprising first, second, and pilot components and modulating the first baseband signal in inverse proportion to the strength of the first component of the first baseband signal and an RF output stage for generating and transmitting a single sideband signal comprising first, second, and pilot portions corresponding to the first, second, and pilot components of the modulated first baseband signal. The receiver comprises an RF input stage for receiving the single sideband signal and a receiver baseband processing portion for generating a second baseband signal comprising first, second, and third components corresponding to the first, second, and third portions of the single sideband signal and for correcting the second baseband signal based on the pilot component of the second baseband signal.
    Type: Grant
    Filed: April 3, 1992
    Date of Patent: June 22, 1993
    Inventors: John F. Cleveland, Jay M. Fassett, Mark D. Peterson