Patents by Inventor Jay McCarren

Jay McCarren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200157558
    Abstract: Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutant strains have mutated chloroplastic SRP54 genes and exhibit increased productivity with respect to wild type strains. Also provided are mutant algal strains having mutated cytosolic SRP54 genes. Provided herein are methods of producing biomass and other products such as lipids using strains having mutations in an SRP54 gene. Also included are constructs and methods for attenuating or disrupting SRP54 genes.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Christen G. DiPetrillo, Jay McCarren, Leah Soriaga
  • Patent number: 10544424
    Abstract: Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutant strains have mutated chloroplastic SRP54 genes and exhibit increased productivity with respect to wild type strains. Also provided are mutant algal strains having mutated cytosolic SRP54 genes. Provided herein are methods of producing biomass and other products such as lipids using strains having mutations in an SRP54 gene. Also included are constructs and methods for attenuating or disrupting SRP54 genes.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: January 28, 2020
    Assignee: Synthetic Genomics, Inc.
    Inventors: Christen G. DiPetrillo, Jay McCarren, Leah Soriaga
  • Patent number: 10174087
    Abstract: Mutant photosynthetic algae having increased biomass productivity are provided. The mutants have attenuated expression of violaxanthin chlorophyll a binding proteins (VCP) or fucoxanthin chlorophyll a/c binding proteins (FCP), reduced chlorophyll, higher apparent ETR(II), little to no reduction in Pmax per cell, and decreased NPQ over a wide range of light intensities. Provided herein are constructs for attenuating or disrupting VCP or FCP genes. Also provided are methods of culturing VCP or FCP mutants for the production of biomass or other products.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: January 8, 2019
    Assignee: Synthetic Genomics, Inc.
    Inventors: Jonathan E. Meuser, Christen G. DiPetrillo, Jay McCarren, Shaun Bailey
  • Patent number: 9982272
    Abstract: Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutants have a locked in high light-acclimated phenotype, in which many of the photosynthetic parameters characteristic of high light acclimated wild type cells are found in the LIHLA mutants when acclimated to low light, such as reduced chlorophyll, reduced NPQ, higher qP, higher Ek, higher Pmax per unit chlorophyll with little to no reduction in Pmax per cell, and higher rates of electron transport through photosystem II over a wide range of light intensities. Provided herein are constructs for attenuating or disrupting genes are provided for generating mutants having the LIHLA phenotype. Also provided are methods of culturing LIHLA mutants for the production of biomass or other products.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 29, 2018
    Assignee: Synthetic Genomics, Inc.
    Inventors: Shaun Bailey, Jay McCarren, Soyan Leung Lieberman, Jonathan E. Meuser, Anna E. Romano, Daniel Yee, Leah Soriaga, Robert C. Brown, Ariel S. Schwartz
  • Publication number: 20170114107
    Abstract: Mutant photosynthetic algae having increased biomass productivity are provided. The mutants have attenuated expression of violaxanthin chlorophyll a binding proteins (VCP) or fucoxanthin chlorophyll a/c binding proteins (FCP), reduced chlorophyll, higher apparent ETR(II), little to no reduction in Pmax per cell, and decreased NPQ over a wide range of light intensities. Provided herein are constructs for attenuating or disrupting VCP or FCP genes. Also provided are methods of culturing VCP or FCP mutants for the production of biomass or other products.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 27, 2017
    Inventors: Jonathan E. Meuser, Christen G. DiPetrillo, Jay McCarren, Shaun Bailey
  • Publication number: 20160304896
    Abstract: Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutant strains have mutated chloroplastic SRP54 genes and exhibit increased productivity with respect to wild type strains. Also provided are mutant algal strains having mutated cytosolic SRP54 genes. Provided herein are methods of producing biomass and other products such as lipids using strains having mutations in an SRP54 gene. Also included are constructs and methods for attenuating or disrupting SRP54 genes.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 20, 2016
    Inventors: Christen G. DiPetrillo, Jay McCarren, Leah Soriaga
  • Patent number: 9329131
    Abstract: Systems and methods are provided for using a growth vessel to simulate algae growth and/or productivity in a reference environment, such as an open pond, a closed photobioreactor, or a hybrid system. Based on predicted algae sample trajectories in the reference environment, an illumination profile is developed. An algae sample in the growth vessel can then be exposed to the illumination profile under controlled conditions. Properties of algae in the reference environment can then be characterized based on the sample exposed to the illumination profile.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 3, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Corey Dodge, Graham Peers, Jay McCarren, Miguel Olaizola
  • Publication number: 20140220638
    Abstract: Mutant photosynthetic microorganisms having reduced chlorophyll and increased photosynthetic efficiency are provided. The mutants have a locked in high light-acclimated phenotype, in which many of the photosynthetic parameters characteristic of high light acclimated wild type cells are found in the LIHLA mutants when acclimated to low light, such as reduced chlorophyll, reduced NPQ, higher qP, higher Ek, higher Pmax per unit chlorophyll with little to no reduction in Pmax per cell, and higher rates of electron transport through photosystem II over a wide range of light intensities. Provided herein are constructs for attenuating or disrupting genes are provided for generating mutants having the LIHLA phenotype. Also provided are methods of culturing LIHLA mutants for the production of biomass or other products.
    Type: Application
    Filed: December 6, 2013
    Publication date: August 7, 2014
    Applicant: Synthetic Genomics, Inc.
    Inventors: Shaun Bailey, Jay McCarren, Soyan Leung Lieberman, Jonathan E. Meuser, Anna E. Romano, Daniel Yee, Leah Soriaga, Robert C. Brown, Joseph C. Weissman, Roger C. Prince, Robert D. Nielsen, Ariel S. Schwartz
  • Publication number: 20130143255
    Abstract: Systems and methods are provided for using a growth vessel to simulate algae growth and/or productivity in a reference environment, such as an open pond, a closed photobioreactor, or a hybrid system. Based on predicted algae sample trajectories in the reference environment, an illumination profile is developed. An algae sample in the growth vessel can then be exposed to the illumination profile under controlled conditions. Properties of algae in the reference environment can then be characterized based on the sample exposed to the illumination profile.
    Type: Application
    Filed: July 20, 2012
    Publication date: June 6, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Corey Dodge, Graham Peers, Jay McCarren, Miguel Olaizola