Patents by Inventor Jay Michael Gambetta

Jay Michael Gambetta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210374587
    Abstract: Techniques for managing and compressing quantum output data (QOD) associated with quantum computing are presented. In response to receiving QOD from a quantum computer, a compressor component can compress QOD at first compression level to generate first compressed QOD, and can compress QOD at second compression level to generate second compressed QOD, the second compressed QOD can be less compressed than the first compressed QOD. Compressor management component (CMC) can determine whether first QOD includes sufficient data to enable it to be suitably processed by quantum logic. If so, CMC can allow first compressed QOD to continue to be sent to quantum logic and can discard second compressed QOD. If not sufficient, CMC can determine that second compressed QOD is to be processed by quantum logic. If CMC determines second compressed QOD does not include sufficient data, CMC can determine that the QOD is to be processed by quantum logic.
    Type: Application
    Filed: June 2, 2020
    Publication date: December 2, 2021
    Inventors: Jay Michael Gambetta, Ismael Faro Sertage, Francisco Jose Martin Fernandez
  • Publication number: 20210365824
    Abstract: A method of generating a randomized benchmarking protocol includes providing a randomly generated plurality of Hadamard gates; applying the Hadamard gates to a plurality of qubits; and generating randomly a plurality of Hadamard-free Clifford circuits. Each of the plurality of Hadamard-free Clifford circuits is generated by at least randomly generating a uniformly distributed phase (P) gate, and randomly generating a uniformly distributed linear Boolean invertible matrix of conditional NOT (CNOT) gate, and combining the P and CNOT gates to form each of the plurality of Hadamard-free Clifford circuits. The method also includes combining each of the plurality of Hadamard-free Clifford circuits with corresponding each of the plurality of Hadamard gates to form a sequence of alternating Hadamard-free Clifford-Hadamard pairs circuit to form the randomized benchmarking protocol; and measuring noise in a quantum mechanical processor using the randomized benchmarking protocol.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 25, 2021
    Inventors: Dmitri Maslov, Sergey Bravyi, Jay Michael Gambetta
  • Publication number: 20210357796
    Abstract: A method of generating a randomized benchmarking protocol includes providing a randomly generated plurality of Hadamard gates; applying the Hadamard gates to a plurality of qubits; and generating randomly a plurality of Hadamard-free Clifford circuits. Each of the plurality of Hadamard-free Clifford circuits is generated by at least randomly generating a uniformly distributed phase (P) gate, and randomly generating a uniformly distributed linear Boolean invertible matrix of conditional NOT (CNOT) gate, and combining the P and CNOT gates to form each of the plurality of Hadamard-free Clifford circuits. The method also includes combining each of the plurality of Hadamard-free Clifford circuits with corresponding each of the plurality of Hadamard gates to form a sequence of alternating Hadamard-free Clifford-Hadamard pairs circuit to form the randomized benchmarking protocol; and measuring noise in a quantum mechanical processor using the randomized benchmarking protocol.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 18, 2021
    Inventors: Dmitri Maslov, Sergey Bravyi, Jay Michael Gambetta
  • Publication number: 20210334079
    Abstract: Systems and methods that can facilitate a quantum adaptive execution method based on previous quantum circuits and its intermediate results. This can generate an optimized adaptive compilation methodology for a specific backend and the previous quantum circuits dependents and thus redirect by the job dispatcher to the right quantum backend. Some of the quantum circuits can be dependent on other quantum circuits based on the intermediate results produced by the previous circuits. Hence, it is valuable that a system can manage the optimization of circuits based on its dependencies and by the results generated by the previous quantum circuits. In this way, the system can get an optimal result for a quantum circuit and inject it to the compiler unit to generate an adaptive compilation result. The resulted post-processing unit is the one in charge to apply this logic and manage the input/output of data to push it in the compiler units and the job dispatcher.
    Type: Application
    Filed: April 28, 2020
    Publication date: October 28, 2021
    Inventors: Jay Michael Gambetta, Ismael Faro Sertage, Francisco Jose Martin Fernandez
  • Publication number: 20210232962
    Abstract: An embodiment includes (CR) gate having a first control qubit coupled with a first target qubit, and a second CR gate having a second control qubit coupled with a second target qubit and the first control qubit. The embodiment also includes controller circuitry for performing operations including first and second iterations of: during a first time period, directing respective CR pulses to the first and second control qubits; during a second time period, directing respective single qubit pulses to the first control qubit and to the second target qubit; during a third time period, directing respective CR pulses to the first and second control qubits; and during a fourth time period, directing respective single qubit pulses to the second control qubit and to the first target qubit.
    Type: Application
    Filed: December 21, 2020
    Publication date: July 29, 2021
    Applicant: International Business Machines Corporation
    Inventors: Xuan Wei, Sarah Elizabeth Sheldon, Maika Takita, Jay Michael Gambetta
  • Patent number: 10956829
    Abstract: An embodiment includes (CR) gate having a first control qubit coupled with a first target qubit, and a second CR gate having a second control qubit coupled with a second target qubit and the first control qubit. The embodiment also includes controller circuitry for performing operations including first and second iterations of: during a first time period, directing respective CR pulses to the first and second control qubits; during a second time period, directing respective single qubit pulses to the first control qubit and to the second target qubit; during a third time period, directing respective CR pulses to the first and second control qubits; and during a fourth time period, directing respective single qubit pulses to the second control qubit and to the first target qubit.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: March 23, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xuan Wei, Sarah Elizabeth Sheldon, Maika Takita, Jay Michael Gambetta