Patents by Inventor Jay W. Strane

Jay W. Strane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11189532
    Abstract: A finned semiconductor structure including sets of relatively wide and relatively narrow fins is obtained by employing hard masks having different quality. A relatively porous hard mask is formed over a first region of a semiconductor substrate and a relatively dense hard mask is formed over a second region of the substrate. Patterning of the different hard masks using a sidewall image transfer process causes greater lateral etching of the relatively porous hard mask than the relatively dense hard mask. A subsequent reactive ion etch to form semiconductor fins causes relatively narrow fins to be formed beneath the relatively porous hard mask and relatively wide fins to be formed beneath the relatively dense hard mask.
    Type: Grant
    Filed: December 15, 2019
    Date of Patent: November 30, 2021
    Assignee: International Business Machines Corporation
    Inventors: Yi Song, Jay W. Strane, Eric Miller, Fee Li Lie, Richard A. Conti
  • Patent number: 11043429
    Abstract: A method is presented for forming dielectric isolated fins. The method includes forming a plurality of fin structures over a semiconductor substrate, forming spacers adjacent each of the plurality of fins, recessing the semiconductor substrate to form bottom fin profiles, and forming shallow trench isolation (STI) regions between the plurality of fins and the bottom fin profiles. The method further includes etching the STI regions, a select number of the plurality of fins, and a portion of a select number of the bottom fin profiles to create cavities between a mechanical anchor defined between a pair of fins of the plurality of fins, the etching resulting in undercutting of remaining fins.
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: June 22, 2021
    Assignee: International Business Machines Corporation
    Inventors: Peng Xu, Kangguo Cheng, Jay W. Strane
  • Patent number: 10892193
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 12, 2021
    Assignee: International Business Machines Corporation
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Patent number: 10770361
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Publication number: 20200194314
    Abstract: A finned semiconductor structure including sets of relatively wide and relatively narrow fins is obtained by employing hard masks having different quality. A relatively porous hard mask is formed over a first region of a semiconductor substrate and a relatively dense hard mask is formed over a second region of the substrate. Patterning of the different hard masks using a sidewall image transfer process causes greater lateral etching of the relatively porous hard mask than the relatively dense hard mask. A subsequent reactive ion etch to form semiconductor fins causes relatively narrow fins to be formed beneath the relatively porous hard mask and relatively wide fins to be formed beneath the relatively dense hard mask.
    Type: Application
    Filed: December 15, 2019
    Publication date: June 18, 2020
    Inventors: Yi Song, Jay W. Strane, Eric Miller, Fee Li Lie, Richard A. Conti
  • Publication number: 20200176332
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Patent number: 10672668
    Abstract: A finned semiconductor structure including sets of relatively wide and relatively narrow fins is obtained by employing hard masks having different quality. A relatively porous hard mask is formed over a first region of a semiconductor substrate and a relatively dense hard mask is formed over a second region of the substrate. Patterning of the different hard masks using a sidewall image transfer process causes greater lateral etching of the relatively porous hard mask than the relatively dense hard mask. A subsequent reactive ion etch to form semiconductor fins causes relatively narrow fins to be formed beneath the relatively porous hard mask and relatively wide fins to be formed beneath the relatively dense hard mask.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yi Song, Jay W. Strane, Eric Miller, Fee Li Lie, Richard A. Conti
  • Patent number: 10665514
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 26, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Publication number: 20200152520
    Abstract: A method is presented for forming dielectric isolated fins. The method includes forming a plurality of fin structures over a semiconductor substrate, forming spacers adjacent each of the plurality of fins, recessing the semiconductor substrate to form bottom fin profiles, and forming shallow trench isolation (STI) regions between the plurality of fins and the bottom fin profiles. The method further includes etching the STI regions, a select number of the plurality of fins, and a portion of a select number of the bottom fin profiles to create cavities between a mechanical anchor defined between a pair of fins of the plurality of fins, the etching resulting in undercutting of remaining fins.
    Type: Application
    Filed: January 14, 2020
    Publication date: May 14, 2020
    Inventors: Peng Xu, Kangguo Cheng, Jay W. Strane
  • Patent number: 10636709
    Abstract: A method is presented for forming dielectric isolated fins. The method includes forming a plurality of fin structures over a semiconductor substrate, forming spacers adjacent each of the plurality of fins, recessing the semiconductor substrate to form bottom fin profiles, and forming shallow trench isolation (STI) regions between the plurality of fins and the bottom fin profiles. The method further includes etching the STI regions, a select number of the plurality of fins, and a portion of a select number of the bottom fin profiles to create cavities between a mechanical anchor defined between a pair of fins of the plurality of fins, the etching resulting in undercutting of remaining fins.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: April 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Peng Xu, Kangguo Cheng, Jay W. Strane
  • Patent number: 10586700
    Abstract: A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: March 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Belyansky, Richard A. Conti, Dechao Guo, Devendra K. Sadana, Jay W. Strane
  • Publication number: 20200027796
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Patent number: 10535550
    Abstract: A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: January 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael P. Belyansky, Richard A. Conti, Dechao Guo, Devendra K. Sadana, Jay W. Strane
  • Publication number: 20190385916
    Abstract: Semiconductor devices and methods are provided to fabricate fin field-effect transistor (FinFET) devices having uniform fin height profiles. For example, uniformity of fin height profiles for FinFET devices is obtained by implementing a gate oxide removal process which is designed to prevent etching of an isolation layer (e.g., a shallow trench isolation layer) formed of an oxide material during removal of, e.g., sacrificial gate oxide layers of dummy gate structures during a replacement metal gate process.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Inventors: Yi Song, Veeraraghavan S. Baskar, Jay W. Strane, Ekmini Anuja De Silva
  • Publication number: 20190371678
    Abstract: A finned semiconductor structure including sets of relatively wide and relatively narrow fins is obtained by employing hard masks having different quality. A relatively porous hard mask is formed over a first region of a semiconductor substrate and a relatively dense hard mask is formed over a second region of the substrate. Patterning of the different hard masks using a sidewall image transfer process causes greater lateral etching of the relatively porous hard mask than the relatively dense hard mask. A subsequent reactive ion etch to form semiconductor fins causes relatively narrow fins to be formed beneath the relatively porous hard mask and relatively wide fins to be formed beneath the relatively dense hard mask.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Yi Song, Jay W. Strane, Eric Miller, Fee Li Li, Richard A. Conti
  • Publication number: 20190311955
    Abstract: A method is presented for forming dielectric isolated fins. The method includes forming a plurality of fin structures over a semiconductor substrate, forming spacers adjacent each of the plurality of fins, recessing the semiconductor substrate to form bottom fin profiles, and forming shallow trench isolation (STI) regions between the plurality of fins and the bottom fin profiles. The method further includes etching the STI regions, a select number of the plurality of fins, and a portion of a select number of the bottom fin profiles to create cavities between a mechanical anchor defined between a pair of fins of the plurality of fins, the etching resulting in undercutting of remaining fins.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Inventors: Peng Xu, Kangguo Cheng, Jay W. Strane
  • Publication number: 20190067079
    Abstract: A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
    Type: Application
    Filed: November 16, 2017
    Publication date: February 28, 2019
    Inventors: Michael P. Belyansky, Richard A. Conti, Dechao Guo, Devendra K. Sadana, Jay W. Strane
  • Publication number: 20190067078
    Abstract: A semiconductor structure includes a plurality of semiconductor fins on an upper surface of a semiconductor substrate. The semiconductor fins spaced apart from one another by a respective trench to define a fin pitch. A multi-layer electrical isolation region is contained in each trench. The multi-layer electrical isolation region includes an oxide layer and a protective layer. The oxide layer includes a first material on an upper surface of the semiconductor substrate. The protective layer includes a second material on an upper surface of the oxide layer. The second material is different than the first material. The first material has a first etch resistance and the second material has a second etch resistance that is greater than the first etch resistance.
    Type: Application
    Filed: August 28, 2017
    Publication date: February 28, 2019
    Inventors: Michael P. Belyansky, Richard A. Conti, Dechao Guo, Devendra K. Sadana, Jay W. Strane
  • Patent number: 9984935
    Abstract: A method for providing a uniform recess depth between different fin gap sizes includes depositing a dielectric material between fins on a substrate. Etch lag is tuned for etching the dielectric material between narrow gaps faster than the dielectric material between wider gaps such that the dielectric material in the narrow gaps reaches a target depth. An etch block is formed in the narrow gaps. The wider gaps are etched to the target depth. The etch block is removed.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Michael Rizzolo, Jay W. Strane
  • Patent number: 9984916
    Abstract: A method for providing a uniform recess depth between different fin gap sizes includes depositing a dielectric material between fins on a substrate. Etch lag is tuned for etching the dielectric material between narrow gaps faster than the dielectric material between wider gaps such that the dielectric material in the narrow gaps reaches a target depth. An etch block is formed in the narrow gaps. The wider gaps are etched to the target depth. The etch block is removed.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Michael Rizzolo, Jay W. Strane