Patents by Inventor Jay Yamanaga
Jay Yamanaga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240209257Abstract: Disclosed are films comprising Ag In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm when excited using a blue light source with a wavelength of about 450 nm.Type: ApplicationFiled: March 7, 2024Publication date: June 27, 2024Inventors: Ravisubhash TANGIRALA, Jay YAMANAGA, Wenzhou GUO, Christopher SUNDERLAND, Ashenafi Damtew MAMUYE, Chunming WANG, Eunhee HWANG, Nahyoung KIM
-
Publication number: 20240101900Abstract: The invention relates to highly luminescent nanostructures with improved blue light absorbance, particularly core/shell nanostructures comprising a ZnSe core and InP and/or ZnS shell layers. The invention also relates to methods of producing such nanostructures.Type: ApplicationFiled: March 9, 2023Publication date: March 28, 2024Applicant: Nanosys, Inc.Inventors: John CURLEY, Chunming WANG, Jay YAMANAGA, Xiaofeng ZHANG, Christian IPPEN
-
Patent number: 11926776Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.Type: GrantFiled: June 22, 2022Date of Patent: March 12, 2024Assignee: SHOEI CHEMICAL INC.Inventors: Ravisubhash Tangirala, Jay Yamanaga, Wenzhou Guo, Christopher Sunderland, Ashenafi Damtew Mamuye, Chunming Wang, Eunhee Hwang, Nahyoung Kim
-
Patent number: 11824146Abstract: Quantum dots and methods of making quantum dots are described. A method begins with forming quantum dots having a core-shell structure with a plurality of ligands on the shell structure. The method includes exchanging the plurality of ligands with a plurality of second ligands. The plurality of second ligands have a weaker binding affinity to the shell structure than the plurality of first ligands. The plurality of second ligands are then exchanged with hydrolyzed alkoxysilane to form a monolayer of hydrolyzed alkoxysilane on a surface of the shell structure. The method includes forming a barrier layer around the shell structure by using the hydrolyzed alkoxysilane as a nucleation center.Type: GrantFiled: October 27, 2020Date of Patent: November 21, 2023Assignee: SHOEI CHEMICAL INC.Inventors: Shihai Kan, Jay Yamanaga, Charles Hotz, Jason Hartlove, Veeral Hardev, Jian Chen, Christian Ippen, Wenzhou Guo, Robert Wilson
-
Patent number: 11634631Abstract: The invention relates to highly luminescent nanostructures with improved blue light absorbance, particularly core/shell nanostructures comprising a ZnSe core and InP and/or ZnS shell layers. The invention also relates to methods of producing such nanostructures.Type: GrantFiled: December 20, 2019Date of Patent: April 25, 2023Assignee: Nanosys, Inc.Inventors: John Curley, Chunming Wang, Jay Yamanaga, Xiaofeng Zhang, Christian Ippen
-
Publication number: 20230002672Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.Type: ApplicationFiled: June 22, 2022Publication date: January 5, 2023Applicant: Nanosys, Inc.Inventors: Ravisubhash TANGIRALA, Jay YAMANAGA, Wenzhou GUO, Christopher SUNDERLAND, Ashenafi Damtew MAMUYE, Chunming WANG, Eunhee HWANG, Nahyoung KIM
-
Patent number: 11407940Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.Type: GrantFiled: February 3, 2021Date of Patent: August 9, 2022Assignee: Nanosys, Inc.Inventors: Ravisubhash Tangirala, Jay Yamanaga, Wenzhou Guo, Christopher Sunderland, Ashenafi Damtew Mamuye, Chunming Wang, Eunhee Hwang, Nahyoung Kim
-
Publication number: 20220195294Abstract: Disclosed are films comprising Ag, In, Ga, and S (AIGS) nanostructures and at least one ligand bound to the nanostructures. In some embodiment, the AIGS nanostructures have a photon conversion efficiency of greater than 32% and a peak wavelength emission of 480-545 nm. In some embodiments, the nanostructures have an emission spectrum with a FWHM of 24-38 nm.Type: ApplicationFiled: February 3, 2021Publication date: June 23, 2022Applicant: Nanosys, Inc.Inventors: Ravisubhash TANGIRALA, Jay YAMANAGA, Wenzhou GUO, Christopher SUNDERLAND, Ashenafi Damtew MAMUYE, Chunming WANG, Eunhee HWANG, Nahyoung KIM
-
Patent number: 11041071Abstract: The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one poly(alkylene oxide) ligand bound to the surface of the nanostructures, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.Type: GrantFiled: August 16, 2018Date of Patent: June 22, 2021Assignee: Nanosys, Inc.Inventors: Ravisubhash Tangirala, Shihai Kan, Jay Yamanaga, Charles Hotz, Donald Zehnder
-
Patent number: 10985296Abstract: Embodiments of a display device including barrier layer coated quantum dots and a method of making the barrier layer coated quantum dots are described. Each of the barrier layer coated quantum dots includes a core-shell structure and a hydrophobic barrier layer disposed on the core-shell structure. The hydrophobic barrier layer is configured to provide a distance between the core-shell structure of one of the quantum dots with the core-shell structures of other quantum dots that are in substantial contact with the one of the quantum dots. The method for making the barrier layer coated quantum dots includes forming reverse micro-micelles using surfactants and incorporating quantum dots into the reverse micro-micelles. The method further includes individually coating the incorporated quantum dots with a barrier layer and isolating the barrier layer coated quantum dots with the surfactants of the reverse micro-micelles disposed on the barrier layer.Type: GrantFiled: November 27, 2019Date of Patent: April 20, 2021Assignee: Nanosys, Inc.Inventors: Jason Hartlove, Veeral Hardev, Shihai Kan, Jian Chen, Jay Yamanaga, Christian Ippen, Wenzhuo Guo, Charles Hotz, Robert Wilson
-
Publication number: 20210043814Abstract: Quantum dots and methods of making quantum dots are described. A method begins with forming quantum dots having a core-shell structure with a plurality of ligands on the shell structure. The method includes exchanging the plurality of ligands with a plurality of second ligands. The plurality of second ligands have a weaker binding affinity to the shell structure than the plurality of first ligands. The plurality of second ligands are then exchanged with hydrolyzed alkoxysilane to form a monolayer of hydrolyzed alkoxysilane on a surface of the shell structure. The method includes forming a barrier layer around the shell structure by using the hydrolyzed alkoxysilane as a nucleation center.Type: ApplicationFiled: October 27, 2020Publication date: February 11, 2021Applicant: Nanosys, Inc.Inventors: Shihai KAN, Jay YAMANAGA, Charles HOTZ, Jason HARTLOVE, Veeral HARDEV, Jian CHEN, Christian IPPEN, Wenzhou GUO, Robert WILSON
-
Patent number: 10854798Abstract: Quantum dots and methods of making quantum dots are described. A method begins with forming quantum dots having a core-shell structure with a plurality of ligands on the shell structure. The method includes exchanging the plurality of ligands with a plurality of second ligands. The plurality of second ligands have a weaker binding affinity to the shell structure than the plurality of first ligands. The plurality of second ligands are then exchanged with hydrolyzed alkoxysilane to form a monolayer of hydrolyzed alkoxysilane on a surface of the shell structure. The method includes forming a barrier layer around the shell structure by using the hydrolyzed alkoxysilane as a nucleation center.Type: GrantFiled: October 1, 2019Date of Patent: December 1, 2020Assignee: Nanosys, Inc.Inventors: Shihai Kan, Jay Yamanaga, Charles Hotz, Jason Hartlove, Veeral Hardev, Jian Chen, Christian Ippen, Wenzhou Guo, Robert Wilson
-
Publication number: 20200216756Abstract: The invention relates to highly luminescent nanostructures with improved blue light absorbance, particularly core/shell nanostructures comprising a ZnSe core and InP and/or ZnS shell layers. The invention also relates to methods of producing such nanostructures.Type: ApplicationFiled: December 20, 2019Publication date: July 9, 2020Applicant: Nanosys, Inc.Inventors: John CURLEY, Chunming WANG, Jay YAMANAGA, Xiaofeng ZHANG, Christian IPPEN
-
Publication number: 20200098951Abstract: Embodiments of a display device including barrier layer coated quantum dots and a method of making the barrier layer coated quantum dots are described. Each of the barrier layer coated quantum dots includes a core-shell structure and a hydrophobic barrier layer disposed on the core-shell structure. The hydrophobic barrier layer is configured to provide a distance between the core-shell structure of one of the quantum dots with the core-shell structures of other quantum dots that are in substantial contact with the one of the quantum dots. The method for making the barrier layer coated quantum dots includes forming reverse micro-micelles using surfactants and incorporating quantum dots into the reverse micro-micelles. The method further includes individually coating the incorporated quantum dots with a barrier layer and isolating the barrier layer coated quantum dots with the surfactants of the reverse micro-micelles disposed on the barrier layer.Type: ApplicationFiled: November 27, 2019Publication date: March 26, 2020Applicant: Nanosys, Inc.Inventors: Jason HARTLOVE, Veeral HARDEV, Shihai KAN, Jian CHEN, Jay YAMANAGA, Christian IPPEN, Wenzhuo GUO, Charles HOTZ, Robert WILSON
-
Publication number: 20200035881Abstract: Quantum dots and methods of making quantum dots are described. A method begins with forming quantum dots having a core-shell structure with a plurality of ligands on the shell structure. The method includes exchanging the plurality of ligands with a plurality of second ligands. The plurality of second ligands have a weaker binding affinity to the shell structure than the plurality of first ligands. The plurality of second ligands are then exchanged with hydrolyzed alkoxysilane to form a monolayer of hydrolyzed alkoxysilane on a surface of the shell structure. The method includes forming a barrier layer around the shell structure by using the hydrolyzed alkoxysilane as a nucleation center.Type: ApplicationFiled: October 1, 2019Publication date: January 30, 2020Applicant: Nanosys, Inc.Inventors: Shihai KAN, Jay YAMANAGA, Charles HOTZ, Jason HARTLOVE, Veeral HARDEV, Jian CHEN, Christian IPPEN, Wenzhou GUO, Robert WILSON
-
Patent number: 10497841Abstract: Embodiments of a display device including barrier layer coated quantum dots and a method of making the barrier layer coated quantum dots are described. Each of the barrier layer coated quantum dots includes a core-shell structure and a hydrophobic barrier layer disposed on the core-shell structure. The hydrophobic barrier layer is configured to provide a distance between the core-shell structure of one of the quantum dots with the core-shell structures of other quantum dots that are in substantial contact with the one of the quantum dots. The method for making the barrier layer coated quantum dots includes forming reverse micro-micelles using surfactants and incorporating quantum dots into the reverse micro-micelles. The method further includes individually coating the incorporated quantum dots with a barrier layer and isolating the barrier layer coated quantum dots with the surfactants of the reverse micro-micelles disposed on the barrier layer.Type: GrantFiled: October 31, 2018Date of Patent: December 3, 2019Assignee: Nanosys, Inc.Inventors: Jason Hartlove, Veeral Hardev, Shihai Kan, Jian Chen, Jay Yamanaga, Christian Ippen, Wenzhou Guo, Charles Hotz, Robert Wilson
-
Patent number: 10475971Abstract: Quantum dots and methods of making quantum dots are described. A method begins with forming quantum dots having a core-shell structure with a plurality of ligands on the shell structure. The method includes exchanging the plurality of ligands with a plurality of second ligands. The plurality of second ligands have a weaker binding affinity to the shell structure than the plurality of first ligands. The plurality of second ligands are then exchanged with hydrolyzed alkoxysilane to form a monolayer of hydrolyzed alkoxysilane on a surface of the shell structure. The method includes forming a barrier layer around the shell structure by using the hydrolyzed alkoxysilane as a nucleation center.Type: GrantFiled: July 19, 2018Date of Patent: November 12, 2019Assignee: Nanosys, Inc.Inventors: Shihai Kan, Jay Yamanaga, Charles Hotz, Jason Hartlove, Veeral Hardev, Jian Chen, Christian Ippen, Wenzhuo Guo, Robert Wilson
-
Patent number: 10243114Abstract: Embodiments of a display device including barrier layer coated quantum dots and a method of making the barrier layer coated quantum dots are described. Each of the barrier layer coated quantum dots includes a core-shell structure and a hydrophobic barrier layer disposed on the core-shell structure. The hydrophobic barrier layer is configured to provide a distance between the core-shell structure of one of the quantum dots with the core-shell structures of other quantum dots that are in substantial contact with the one of the quantum dots. The method for making the barrier layer coated quantum dots includes forming reverse micro-micelles using surfactants and incorporating quantum dots into the reverse micro-micelles. The method further includes individually coating the incorporated quantum dots with a barrier layer and isolating the barrier layer coated quantum dots with the surfactants of the reverse micro-micelles disposed on the barrier layer.Type: GrantFiled: March 5, 2018Date of Patent: March 26, 2019Assignee: Nanosys, Inc.Inventors: Jason Hartlove, Veeral Hardev, Shihai Kan, Jian Chen, Jay Yamanaga, Christian Ippen, Wenzhuo Guo, Charles Hotz, Robert Wilson
-
Publication number: 20190088830Abstract: Embodiments of a display device including barrier layer coated quantum dots and a method of making the barrier layer coated quantum dots are described. Each of the barrier layer coated quantum dots includes a core-shell structure and a hydrophobic barrier layer disposed on the core-shell structure. The hydrophobic barrier layer is configured to provide a distance between the core-shell structure of one of the quantum dots with the core-shell structures of other quantum dots that are in substantial contact with the one of the quantum dots. The method for making the barrier layer coated quantum dots includes forming reverse micro-micelles using surfactants and incorporating quantum dots into the reverse micro-micelles. The method further includes individually coating the incorporated quantum dots with a barrier layer and isolating the barrier layer coated quantum dots with the surfactants of the reverse micro-micelles disposed on the barrier layer.Type: ApplicationFiled: October 31, 2018Publication date: March 21, 2019Applicant: Nanosys, Inc.Inventors: Jason HARTLOVE, Veeral HARDEV, Shihai KAN, Jian CHEN, Jay YAMANAGA, Christian IPPEN, Wenzhou GUO, Charles HOTZ, Robert WILSON
-
Publication number: 20190077954Abstract: The present disclosure provides nanostructure compositions and methods of producing nanostructure compositions. The nanostructure compositions comprise at least one population of nanostructures, at least one poly(alkylene oxide) ligand bound to the surface of the nanostructures, and optionally at least one organic resin. The present disclosure also provides nanostructure films comprising a nanostructure layer and methods of making nanostructure films.Type: ApplicationFiled: August 16, 2018Publication date: March 14, 2019Applicant: Nanosys, Inc.Inventors: Ravisubhash Tangirala, Shihai Kan, Jay Yamanaga, Charles Hotz, Donald Zehnder