Patents by Inventor Jayadeep JACOB

Jayadeep JACOB has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9678822
    Abstract: Embodiments for categorizing a real-time log event are described. In one example, a Term Frequency-Inverse Document Frequency (TF-IDF) vector for the log event is computed based on pre-calculated TF-IDF matrix of log corpus and number of new words in log event, where log corpus comprises one or more pre-existing log events, and where the log event is indicative of error message. Further, distance between TF-IDF vector and cluster centroid of each cluster in the log corpus is calculated. Thereafter, cluster having closest cluster centroid is identified from amongst the clusters based on distance between TF-IDF vector and cluster centroid of each of the clusters, where closest cluster centroid is cluster centroid closest to TF-IDF vector. Subsequently, log event is categorized into one or more log categories based on comparison of distance between TF-IDF vector and closest cluster centroid pre-determined silhouette threshold corresponding to cluster with closest cluster centroid.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: June 13, 2017
    Assignee: TATA CONSULTANCY SERVICES LIMITED
    Inventor: Jayadeep Jacob
  • Publication number: 20160196174
    Abstract: Embodiments for categorizing a real-time log event are described. In one example, a Term Frequency-Inverse Document Frequency (TF-IDF) vector for the log event is computed based on pre-calculated TF-IDF matrix of log corpus and number of new words in log event, where log corpus comprises one or more pre-existing log events, and where the log event is indicative of error message. Further, distance between TF-IDF vector and cluster centroid of each cluster in the log corpus is calculated. Thereafter, cluster having closest cluster centroid is identified from amongst the clusters based on distance between TF-IDF vector and cluster centroid of each of the clusters, where closest cluster centroid is cluster centroid closest to TF-IDF vector. Subsequently, log event is categorized into one or more log categories based on comparison of distance between TF-IDF vector and closest cluster centroid pre-determined silhouette threshold corresponding to cluster with closest cluster centroid.
    Type: Application
    Filed: March 17, 2015
    Publication date: July 7, 2016
    Inventor: Jayadeep JACOB