Patents by Inventor Jayant Kulkarni

Jayant Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240076998
    Abstract: A turbine system includes a foam generating assembly having an in situ foam generating device at least partially positioned within the fluid passageway of the turbine engine, such that the in situ foam generating device is configured to generate foam within the fluid passageway of the turbine engine.
    Type: Application
    Filed: June 1, 2023
    Publication date: March 7, 2024
    Inventors: Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Bernard Patrick Bewlay, Michael Edward Eriksen, Nicole Jessica Tibbetts
  • Publication number: 20240011413
    Abstract: A method of repairing a component of a gas turbine engine in situ, wherein the component includes a deposit, includes directing a flow of gas, which may be an oxygen-containing gas, to the deposit of the component; and heating the component including the deposit while the component is installed in the gas turbine engine and for a duration sufficient to substantially remove the deposit.
    Type: Application
    Filed: June 2, 2023
    Publication date: January 11, 2024
    Inventors: Michael Robert Millheam, Andrew Crispin Graham, Byron Andrew Pritchard, JR., David Scott Diwinsky, Jeremy Clyde Bailey, Michael Edward Eriksen, Ambarish Jayant Kulkarni
  • Publication number: 20240014679
    Abstract: A charging device, comprising a first power converter configured to provide a first output current, a second power converter configured to provide a second output current, a switch coupled to an output of the first power converter and an output of the second power converter, a first socket coupled to the output of the first power converter, a second socket coupled to the output of the second power converter, and a power delivery (PD) controller configured to control a turn ON of the switch in response to a coupling of the first socket to a first powered device and an absence of coupling of the second socket to a second powered device.
    Type: Application
    Filed: September 20, 2023
    Publication date: January 11, 2024
    Applicant: POWER INTEGRATIONS, INC.
    Inventors: Eng Hwee Quek, Aditya Jayant Kulkarni, Ran Li, Roland Sylvere Saint-Pierre
  • Patent number: 11799311
    Abstract: A charging device comprising a first power converter configured to provide a first output power, a second power converter configured to provide a second output power. A switch is coupled to the first power converter and the second power converter. A first socket is configured to deliver the first output power from the first power converter to a first powered device. A second socket is configured to deliver the second output power from the second power converter to a second powered device. A power delivery (PD) controller configured to detect a coupling of the first socket to the first powered device. In addition, the PD controller is configured to detect an absence of coupling of the second socket to the second powered device. Furthermore, the PD controller is configured to control the switch to provide the first output power and the second output power to the first powered device.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 24, 2023
    Assignee: POWER INTEGRATIONS, INC.
    Inventors: Eng Hwee Quek, Aditya Jayant Kulkarni, Ran Li, Roland Sylvere Saint-Pierre
  • Patent number: 11745195
    Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: September 5, 2023
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
  • Publication number: 20230271723
    Abstract: A method for inspecting and repairing a surface of a component of a gas turbine engine, the method including: inserting an inspection and repair tool into an interior of the gas turbine engine; inspecting the surface of the component with the inspection and repair tool; performing a repair of the surface of the component with the inspection and repair tool from within the interior of the gas turbine engine, the inspection and repair tool remaining within the interior of the gas turbine engine between inspecting the component and performing the repair of the surface of the component.
    Type: Application
    Filed: May 5, 2023
    Publication date: August 31, 2023
    Inventors: Todd William Danko, Ambarish Jayant Kulkarni, Margeaux Wallace, Hrishikesh Keshavan, Bernard Patrick Bewlay, Byron Andrew Pritchard, JR., Michael Dean Fullington, Andrew Crispin Graham, Trevor Owen Hawke, Julian Matthew Foxall, Ahmed M. ELKady
  • Publication number: 20230250731
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Application
    Filed: April 17, 2023
    Publication date: August 10, 2023
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew James Jenkins
  • Publication number: 20230228199
    Abstract: A coated component including a slotted ceramic coating with a reactive phase coating disposed thereon for improved resistance to environmental contaminant compositions, along with methods of its formation, is provided. The coated component may include a substrate defining a surface, a ceramic coating disposed on the surface of the substrate, and a reactive phase coating disposed on the layer of environmental contaminant compositions. The ceramic coating includes a plurality of slots disposed in the ceramic coating forming segments of ceramic coating material.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 20, 2023
    Inventors: Hrishikesh Keshavan, Byron Andrew Pritchard, Cathleen Ann Hoel, Ambarish Jayant Kulkarni, Michael Solomon Idelchik, Bernard Patrick Bewlay
  • Patent number: 11702955
    Abstract: A method of repairing a component of a gas turbine engine in situ, wherein the component includes a deposit, includes directing a flow of gas, which may be an oxygen-containing gas, to the deposit of the component; and heating the component including the deposit while the component is installed in the gas turbine engine and for a duration sufficient to substantially remove the deposit.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: July 18, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Michael Robert Millhaem, Andrew Crispin Graham, Byron Andrew Pritchard, Jr., David Scott Diwinsky, Jeremy Clyde Bailey, Michael Edward Eriksen, Ambarish Jayant Kulkarni
  • Patent number: 11702956
    Abstract: A turbine system includes a foam generating assembly having an in situ foam generating device at least partially positioned within the fluid passageway of the turbine engine, such that the in situ foam generating device is configured to generate foam within the fluid passageway of the turbine engine.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: July 18, 2023
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Michael Edward Eriksen, Nicole Jessica Tibbetts
  • Patent number: 11679898
    Abstract: A method for inspecting and repairing a surface of a component of a gas turbine engine, the method including: inserting an inspection and repair tool into an interior of the gas turbine engine; inspecting the surface of the component with the inspection and repair tool; performing a repair of the surface of the component with the inspection and repair tool from within the interior of the gas turbine engine, the inspection and repair tool remaining within the interior of the gas turbine engine between inspecting the component and performing the repair of the surface of the component.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: June 20, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Todd William Danko, Ambarish Jayant Kulkarni, Margeaux Wallace, Hrishikesh Keshavan, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Michael Dean Fullington, Andrew Crispin Graham, Trevor Owen Hawke, Julian Matthew Foxall, Ahmed M ELKady
  • Patent number: 11655720
    Abstract: A sprayable thermal barrier coating powder mixture for a gas turbine engine includes: a dry composition having a low surface area ceramic powder having a median particle size distribution greater than 5 microns and less than 50 microns, and a high surface area ceramic powder having a median particle size distribution smaller than 5 microns, wherein the low surface area ceramic powder makes up at least 50% by weight of the dry composition of the sprayable thermal barrier coating powder mixture.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: May 23, 2023
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Atanu Saha, Margeaux Wallace, Mamatha Nagesh, Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Jr.
  • Patent number: 11649735
    Abstract: A method of cleaning a component within a turbine that includes disassembling the turbine engine to provide a flow path to an interior passageway of the component from an access point. The component has coked hydrocarbons formed thereon. The method further includes discharging a flow of cleaning solution towards the interior passageway from the access point, wherein the cleaning solution is configured to remove the coked hydrocarbons from the component.
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: May 16, 2023
    Assignee: General Electric Company
    Inventors: Michael Robert Millhaem, Nicole Jessica Tibbetts, Byron Andrew Pritchard, Jr., Bernard Patrick Bewlay, Keith Anthony Lauria, Ambarish Jayant Kulkarni, Mark Rosenzweig, Martin Matthew Morra, Timothy Mark Sambor, Andrew Jenkins
  • Patent number: 11624288
    Abstract: A coated component including a slotted ceramic coating with a reactive phase coating disposed thereon for improved resistance to environmental contaminant compositions, along with methods of its formation, is provided. The coated component may include a substrate defining a surface, a ceramic coating disposed on the surface of the substrate, and a reactive phase coating disposed on the layer of environmental contaminant compositions. The ceramic coating includes a plurality of slots disposed in the ceramic coating forming segments of ceramic coating material.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: April 11, 2023
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Byron Andrew Pritchard, Cathleen Ann Hoel, Ambarish Jayant Kulkarni, Michael Solomon Idelchik, Bernard Patrick Bewlay
  • Patent number: 11591928
    Abstract: Embodiments in accordance with the present disclosure include a meta-stable detergent based foam generating device of a turbine cleaning system includes a manifold configured to receive a liquid detergent and an expansion gas, a gas supply source configured to store the expansion gas, and one or more aerators fluidly coupled with, and between, the gas supply source and the manifold. Each aerator of the one or more aerators comprises an orifice through which the expansion gas enters the manifold, and wherein the orifice of each aerator is sized to enable generation of a meta-stable detergent based foam having bubbles with bubble diameters within a range of 10 microns (3.9×10?4 inches inches) and 5 millimeters (0.2 inches), having a half-life within a range of 5 minutes and 180 minutes, or a combination thereof.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: February 28, 2023
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Bernard Patrick Bewlay, Byron Andrew Pritchard, Jr., Nicole Jessica Tibbetts, Michael Edward Eriksen, Stephen Wilton
  • Patent number: 11555413
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 17, 2023
    Assignees: General Electric Company, Oliver Crispin Robotics Limited
    Inventors: Byron Andrew Pritchard, Jr., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Patent number: 11549382
    Abstract: A coated component of a gas turbine engine includes a substrate defining a surface, a thermal barrier coating deposited on the surface of the substrate, a region of the component where the thermal barrier coating has spalled from the substrate, a layer of environmental contaminant compositions formed on one or more of the thermal barrier coating or the region of the component where the thermal barrier coating has spalled from the substrate in response to an initial exposure of the component to high operating temperatures of the gas turbine engine, and a thermal barrier coating (TBC) restoration coating deposited at least on the region of the component where there thermal barrier coating has spalled from the substrate.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: January 10, 2023
    Assignee: General Electric Company
    Inventors: Hrishikesh Keshavan, Ambarish Jayant Kulkarni, Margeaux Wallace, Byron Andrew Pritchard, Jr., Almed M. Elkady, Atanu Saha, Mamatha Nagesh, Bernard Patrick Bewlay
  • Patent number: 11534780
    Abstract: An atomizing spray nozzle device includes an atomizing zone housing that receives different phases of materials used to form a coating. The atomizing zone housing mixes the different phases of the materials into a two-phase mixture of ceramic-liquid droplets in a carrier gas. The device also includes a plenum housing fluidly coupled with the atomizing housing and extending from the atomizing housing to a delivery end. The plenum housing includes an interior plenum that receives the two-phase mixture of ceramic-liquid droplets in the carrier gas from the atomizing zone housing. The device also includes one or more delivery nozzles fluidly coupled with the plenum chamber. The delivery nozzles provide outlets from which the two-phase mixture of ceramic-liquid droplets in the carrier gas is delivered onto one or more surfaces of a target object as the coating on the target object.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: December 27, 2022
    Assignee: General Electric Company
    Inventors: Ambarish Jayant Kulkarni, Hrishikesh Keshavan, Mehmet Dede, Bernard Patrick Bewlay, Guanghua Wang, Byron Pritchard, Michael Solomon Idelchik
  • Publication number: 20220389834
    Abstract: Systems and methods for treating a component of an installed and assembled gas turbine engine are provided. Accordingly, the method includes operably coupling a delivery assembly to an annular inlet of a core gas turbine engine. A portion of treating fluid is atomized with the delivery assembly to develop a treating mist having a plurality of atomized droplets. The atomized droplets are suspended within any path of the core gas turbine engine from the annular inlet to an axial position downstream of a compressor of the core gas turbine engine. A portion of the treating mist is impacted or precipitated onto the component so as to wet the component, and a portion of the deposits on the component is dissolved by the treating mist.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: Byron Andrew Pritchard, JR., Keith Anthony Lauria, Erica Elizabeth Sampson, Bernard Patrick Bewlay, Ambarish Jayant Kulkarni, Michael Robert Millhaem, William Francis Navojosky, Nicole Jessica Tibbetts, Gongguan Wang, Andrew Crispin Graham
  • Patent number: 11506077
    Abstract: An inflatable device equipped with a guiding mechanism and methods of installing the inflatable device to form a temporary barrier within a gas turbine engine are provided. In one aspect, an inflatable device includes a backbone and an inflatable bladder connected thereto. The backbone is formed of a flexible and inextensible material. The inflatable bladder is formed of an expandable material. To install the inflatable device within an annular chamber of a gas turbine engine, the backbone is inserted into a first access port of the engine and is moved circumferentially around the annulus of the chamber. The backbone is retrieved through a second access port. The inflatable bladder is moved into position within the chamber by pushing the backbone into the first access port and/or pulling the backbone out of the second access port. When positioned in place, the inflatable bladder is inflated to form an annular seal.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: November 22, 2022
    Assignee: General Electric Company
    Inventors: Byron Andrew Pritchard, Jr., Deepak Trivedi, Ambarish Jayant Kulkarni, Michael Robert Millhaem