Patents by Inventor Jayant Kumar Gorawara

Jayant Kumar Gorawara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11097219
    Abstract: A process for regenerating a temperature swing adsorption unit comprising: sending a heated purge gas stream through an adsorption bed to remove impurities from said adsorption bed and producing a contaminated stream; sending said contaminated stream to a separator to produce a liquid stream and a vapor stream; returning said vapor stream as at least a portion of said heated purge stream until said vapor stream comprises above a predetermined level of impurities; and purging a portion of said vapor stream until the heated purge stream has a level of impurities below a second predetermined level.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 24, 2021
    Assignee: UOP LLC
    Inventors: John Louis Griffiths, Shain-Jer Doong, James Robert Gaspar, Jayant Kumar Gorawara
  • Publication number: 20190299155
    Abstract: A process for regenerating a temperature swing adsorption unit comprising: sending a heated purge gas stream through an adsorption bed to remove impurities from said adsorption bed and producing a contaminated stream; sending said contaminated stream to a separator to produce a liquid stream and a vapor stream; returning said vapor stream as at least a portion of said heated purge stream until said vapor stream comprises above a predetermined level of impurities; and purging a portion of said vapor stream until the heated purge stream has a level of impurities below a second predetermined level.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Inventors: John Louis Griffiths, Shain-Jer Doong, James Robert Gaspar, Jayant Kumar Gorawara
  • Patent number: 9518239
    Abstract: A process for the removal of sulfur compounds from a feed stream. A first separation zone removes sulfur compounds and produces a partially cleaned stream. A first adsorption zone adsorbs the remaining organic sulfur compounds on a regenerable adsorbent a produces a treated gas stream. A portion of the treated gas stream may regenerate the adsorbent in the first adsorption zone by removing organic sulfur compounds. The organic sulfur compound rich stream can be passed to a non-regenerable adsorption zone. The non-regenerable adsorption zone will separate out the organic sulfur compounds and provide a re-treated gas stream which may be recycled to a portion of the process. The non-regenerable adsorption zone may include regenerable adsorbent, but the zone is not operated to regenerate the adsorbent while it is in the non-regenerable adsorption zone.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: December 13, 2016
    Assignee: UOP LLC
    Inventors: Shain-Jer Doong, Jayant Kumar Gorawara, Lubo Zhou
  • Publication number: 20160032206
    Abstract: A process for the removal of sulfur compounds from a feed stream. A first separation zone removes sulfur compounds and produces a partially cleaned stream. A first adsorption zone adsorbs the remaining organic sulfur compounds on a regenerable adsorbent a produces a treated gas stream. A portion of the treated gas stream may regenerate the adsorbent in the first adsorption zone by removing organic sulfur compounds. The organic sulfur compound rich stream can be passed to a non-regenerable adsorption zone. The non-regenerable adsorption zone will separate out the organic sulfur compounds and provide a re-treated gas stream which may be recycled to a portion of the process. The non-regenerable adsorption zone may include regenerable adsorbent, but the zone is not operated to regenerate the adsorbent while it is in the non-regenerable adsorption zone.
    Type: Application
    Filed: July 29, 2014
    Publication date: February 4, 2016
    Inventors: Shain-Jer Doong, Jayant Kumar Gorawara, Lubo Zhou