Patents by Inventor Jayantilal S. Patel

Jayantilal S. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8395782
    Abstract: A disturbance, such as vibration from human activity, is located along a fiberoptic waveguide configuration (301-304) with two interferometers (801, 802) of the same or different types, such as Mach-Zehnder, Sagnac, and Michelson interferometers. Carrier signals from a source (101) are split at the interferometer inputs (201, 202) and re-combined at the outputs (701, 702) after propagating through the detection zone (401), where phase variations are induced by the disturbance (501). Phase responsive receivers (901, 902) detect phase relationships (1001, 1002) between the carrier signals over time. A processor (1101) combines the phase relationships into composite signals according to equations that differ for different interferometer configurations, with a time lag between or a ratio of the composite signals representing the location of the disturbance.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: March 12, 2013
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang, Yuri Zadorozhny, Francesco A. Annetta
  • Patent number: 7725026
    Abstract: The location of a physical disturbance along an optical waveguide is determined by measuring different propagation times for the resulting phase variation to propagate to phase responsive receivers at ends of bidirectional signal paths. Each receiver can have a coupler that functions as a beam combiner and as a beam splitter inserting the opposite signal. On each receiving end, the coupler provides one or more detectors with signals from which phase related independent variable values are taken, processed and mapped to phase angles. Relative phase angle versus time is derived for each opposite signal pair and correlated at a time difference, i.e., a difference in propagation time from which the location of the disturbance is resolved. Polarization sensitive and polarization insensitive examples are discussed with various optical fiber arrangements.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: May 25, 2010
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang, Yuri Zadorozhny
  • Publication number: 20100014095
    Abstract: A disturbance, such as vibration from human activity, is located along a fiberoptic waveguide configuration (301-304) with two interferometers (801, 802) of the same or different types, such as Mach-Zehnder, Sagnac, and Michelson interferometers. Carrier signals from a source (101) are split at the interferometer inputs (201, 202) and re-combined at the outputs (701, 702) after propagating through the detection zone (401), where phase variations are induced by the disturbance (501). Phase responsive receivers (901, 902) detect phase relationships (1001, 1002) between the carrier signals over time. A processor (1101) combines the phase relationships into composite signals according to equations that differ for different interferometer configurations, with a time lag between or a ratio of the composite signals representing the location of the disturbance.
    Type: Application
    Filed: August 29, 2007
    Publication date: January 21, 2010
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang, Yuri Zadorozhny, Francesco A. Annetta
  • Patent number: 7154668
    Abstract: The attenuation profile of an optical system, which defines the power variation as a function of wavelength is adjusted to alter the slope of its contour. The device is useful in a wavelength division modulation system to flatten the profile of an amplifier or the like that has a non uniform power variation with wavelength. The invention adjusts the slope by first providing an input light signal that has a known polarization state, e.g., processing the input into a known phase and amplitude relation between orthogonal components, such as plane polarized at a given alignment. The signal is then passed through a series of waveplates. The waveplates have different phase retardation and orientation resulting in wavelength dependent polarization change. According to an inventive aspect, by tuning the phase retardation of multiple tunable waveplates the desired wavelength dependent polarization changes over a useful wavelength range can be produced.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: December 26, 2006
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Patent number: 7142736
    Abstract: Polarization effects are managed to provide differential timing information for localizing disturbances affecting two or more counter-propagating light signals on one or more optical waveguides passing through a detection zone. Activity can be localized to a point for a security perimeter. Events causing optical disturbance can be mapped to points along a straight line, a perimeter or arbitrary pattern or an array. Events cause local changes in optical properties in the optical waveguide, in particular an optical fiber. Short term local changes are distinguishable from phase changes of light travel in the waveguide by managing the polarization state of input and output beams.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: November 28, 2006
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang, Yuri Zadorozhny
  • Patent number: 7139476
    Abstract: Polarization effects are managed to provide differential timing information for localizing disturbances affecting two or more counter-propagating light signals on one or more optical waveguides passing through a detection zone. Activity can be localized to a point for a security perimeter. Events causing optical disturbance can be mapped to points along a straight line, a perimeter or arbitrary pattern or an array. Events cause local changes in optical properties in the optical waveguide, in particular an optical fiber. Short term local changes are distinguishable from phase changes of light travel in the waveguide, by managing the polarization state of input and output beams, combining orthogonal polarization components and other aspects. The changes in the states of polarization of the counter-propagating light signals are determined and the temporal spacing of corresponding changes in polarization state are resolved to pinpoint the location of the event along the optical fiber.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: November 21, 2006
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang, Yuri Zadorozhny
  • Patent number: 7127179
    Abstract: A optical polarization encoding device (16) provides wavelength dependent processing of polychromatic optical signals without prior separation into narrow wavelength bands. Embodiments of the encoding device include a wavelength dependent tunable optical switch (400, 500) and a wavelength tunable optical level controller (600). An encoded signal is processed, (e.g., rerouted or attenuated), as a function of wavelength using polarization dependent devices (18). Desired states of polarization are imparted to optical signals to either direct selected wavelengths to selected output ports (optical switch), or to adjust the level of selected channels or wavelengths (level controller). Desired polarizations are achieved simultaneously at all wavelengths contained within the incoming signal by independently varying the birefringence and/or crystallographic orientation of each variable element within the stack.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: October 24, 2006
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Patent number: 7085052
    Abstract: A controller, particularly for setting a desired or randomized polarization state of an output light beam derived from an input, has more than the minimum number of controllable optical elements needed to determine the state of the output. The controller applies control input values to obtain a desired output state. The controller also selects among plural alternative sets of control values that could obtain the desired output state, so as to minimize other error conditions. The concurrent error conditions can be associated finite control range limits, for example to keep the input values near a middle of their ranges. Additional error conditions can include minimizing the incremental change in the values from one set to the next. The control is particularly useful to avoid problems associated with using finite range control elements such as liquid crystals for differential retardation or orthogonal light components, when controlling an endless or periodic parameter such as polarization.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: August 1, 2006
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Patent number: 6816261
    Abstract: Measurements at multiple distinct polarization measurement states are taken to define the polarization state of an input, for example to calculate a Stokes vector. High accuracy and/or capability of frequent recalibration are needed, due to the sensitivity of measurement to retardation of the input signal. A multiple measurement technique takes a set of spatially and/or temporally distinct intensity measurements through distinct waveplates and polarizers. These can be optimized as to orientation and retardation using initial choices and also using tunable elements, especially controllable birefringence elements. A device matrix defines the response of the device at each of the measurement states. The matrix can be corrected using an iterative technique to revise the device matrix, potentially by automated recalibration.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: November 9, 2004
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang, John A. Yeazell
  • Publication number: 20030174400
    Abstract: A controller, particularly for setting a desired or randomized polarization state of an output light beam derived from an input, has more than the minimum number of controllable optical elements needed to determine the state of the output. The controller applies control input values to obtain a desired output state. The controller also selects among plural alternative sets of control values that could obtain the desired output state, so as to minimize other error conditions. The concurrent error conditions can be associated finite control range limits, for example to keep the input values near a middle of their ranges. Additional error conditions can include minimizing the incremental change in the values from one set to the next. The control is particularly useful to avoid problems associated with using finite range control elements such as liquid crystals for differential retardation or orthogonal light components, when controlling an endless or periodic parameter such as polarization.
    Type: Application
    Filed: March 12, 2003
    Publication date: September 18, 2003
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Patent number: 6611342
    Abstract: An interferometer optical element is provided with a birefringent material in the light path. Specifically, a Fabry-Perot optical resonance cavity is operated in a fully reflective mode and is provided with a birefringent material in a cavity between two reflectors. A first mirror, for example of about 90% reflectance and a second mirror, for example of 99% reflectance, define the cavity. The polarization effect is applied exclusively to the resonant wavelength defined by the spacing of the two reflectors. The input beam is fully reflected back in the direction of incidence. However the resonant wavelength component therein is polarized and can be discriminated, e.g., selectively diverted by a polarization beam splitter. A number of application are disclosed, including using a birefringent liquid crystal material and tuning the apparent optical path length by electrically adjusting the birefringence.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: August 26, 2003
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Patent number: 6606181
    Abstract: A controllable phase plate has numerous domains that are randomized as to the orientation of their birefringence and can be used in a power limiting control to produces an electrically controllable diffraction pattern having a portion, especially the zero mode axial spot of the pattern, that is directed onto an output aperture such as a pinhole or an optical fiber end. Controlling the phase plate produces an interference peak or null (or an intermediate level) of light, coupled into the output aperture. The phase plate preferably comprises a liquid crystal with controllable birefringence. The domains have paired orthogonal orientations, which is a condition that is met in randomized domains. The paired orthogonal orientations make the device polarization insensitive. In a controllable attenuating device, collimating lenses are placed before and after the phase plate along a beam path to focus a clear interference pattern on a screen containing the output aperture.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: August 12, 2003
    Assignee: Optellios, Inc.
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Publication number: 20030067602
    Abstract: Measurements at multiple distinct polarization measurement states are taken to define the polarization state of an input, for example to calculate a Stokes vector. High accuracy and/or capability of frequent recalibration are needed, due to the sensitivity of measurement to retardation of the input signal. A multiple measurement technique takes a set of spatially and/or temporally distinct intensity measurements through distinct waveplates and polarizers. These can be optimized as to orientation and retardation using initial choices and also using tunable elements, especially controllable birefringence elements. A device matrix defines the response of the device at each of the measurement states. The matrix can be corrected using an iterative technique to revise the device matrix, potentially by automated recalibration.
    Type: Application
    Filed: May 14, 2002
    Publication date: April 10, 2003
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang, John A. Yeazell
  • Publication number: 20030053173
    Abstract: The attenuation profile of an optical system, which defines the power variation as a function of wavelength is adjusted to alter the slope of its contour. The device is useful in a wavelength division modulation system to flatten the profile of an amplifier or the like that has a non uniform power variation with wavelength. The invention adjusts the slope by first providing an input light signal that has a known polarization state, e.g., processing the input into a known phase and amplitude relation between orthogonal components, such as plane polarized at a given alignment. The signal is then passed through a series of waveplates. The waveplates have different phase retardation and orientation resulting in wavelength dependent polarization change. According to an inventive aspect, by tuning the phase retardation of multiple tunable waveplates the desired wavelength dependent polarization changes over a useful wavelength range can be produced.
    Type: Application
    Filed: July 19, 2002
    Publication date: March 20, 2003
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Publication number: 20030020925
    Abstract: An interferometer optical element is provided with a birefringent material in the light path. Specifically, a Fabry-Perot optical resonance cavity is operated in a fully reflective mode and is provided with a birefringent material in a cavity between two reflectors. A first mirror, for example of about 90% reflectance and a second mirror, for example of 99% reflectance, define the cavity. The polarization effect is applied exclusively to the resonant wavelength defined by the spacing of the two reflectors. The input beam is fully reflected back in the direction of incidence. However the resonant wavelength component therein is polarized and can be discriminated, e.g., selectively diverted by a polarization beam splitter. A number of application are disclosed, including using a birefringent liquid crystal material and tuning the apparent optical path length by electrically adjusting the birefringence.
    Type: Application
    Filed: September 14, 2001
    Publication date: January 30, 2003
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Publication number: 20020089723
    Abstract: A optical polarization encoding device (16) provides wavelength dependent processing of polychromatic optical signals without prior separation into narrow wavelength bands. Embodiments of the encoding device include a wavelength dependent tunable optical switch (400, 500) and a wavelength tunable optical level controller (600). An encoded signal is processed, (e.g., rerouted or attenuated), as a function of wavelength using polarization dependent devices (18). Desired states of polarization are imparted to optical signals to either direct selected wavelengths to selected output ports (optical switch), or to adjust the level of selected channels or wavelengths (level controller). Desired polarizations are achieved simultaneously at all wavelengths contained within the incoming signal by independently varying the birefringence and/or crystallographic orientation of each variable element within the stack.
    Type: Application
    Filed: December 10, 2001
    Publication date: July 11, 2002
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Publication number: 20020080462
    Abstract: A controllable phase plate has numerous domains that are randomized as to the orientation of their birefringence and can be used in a power limiting control to produces an electrically controllable diffraction pattern having a portion, especially the zero mode axial spot of the pattern, that is directed onto an output aperture such as a pinhole or an optical fiber end. Controlling the phase plate produces an interference peak or null (or an intermediate level) of light, coupled into the output aperture. The phase plate preferably comprises a liquid crystal with controllable birefringence. The domains have paired orthogonal orientations, which is a condition that is met in randomized domains. The paired orthogonal orientations make the device polarization insensitive. In a controllable attenuating device, collimating lenses are placed before and after the phase plate along a beam path to focus a clear interference pattern on a screen containing the output aperture.
    Type: Application
    Filed: November 27, 2001
    Publication date: June 27, 2002
    Inventors: Jayantilal S. Patel, Zhizhong Zhuang
  • Patent number: 5414541
    Abstract: A liquid-crystal optical beam switch comprising: a first birefringent layer (14) which divides an input beam (24) into its two polarization components; a first segmented twisted nematic liquid-crystal polarization modulator (16), the segments (30,32) of which rotate one of the polarization beams by 90.degree.
    Type: Grant
    Filed: June 1, 1993
    Date of Patent: May 9, 1995
    Assignee: Bell Communications Research, Inc.
    Inventors: Jayantilal S. Patel, Yaron Silberberg
  • Patent number: 5414540
    Abstract: A liquid-crystal optical switch capable of switching separate optical signals in a physical input channel to a selected output channel. A diffraction grating spatially divides the input channel into its frequency components, which pass through different segments of a liquid-crystal modulator. The liquid-crystal modulator segments are separately controlled to rotate the polarization of the frequency channel passing therethrough or to leave it intact. The channels then pass through a polarization-dispersive element, such as calcite, which spatially separates the beams in the transverse direction according to their polarization. A second diffraction grating recombines the frequency components of the same polarization into multiple output beams.
    Type: Grant
    Filed: September 22, 1993
    Date of Patent: May 9, 1995
    Assignee: Bell Communications Research, Inc.
    Inventors: Jayantilal S. Patel, Yaron Silberberg
  • Patent number: RE35337
    Abstract: A compensator for thermal or other uncontrollable effects in a liquid-crystal etalon filter. The narrow pass band of the filter is controlled by adjusting the amplitude of an AC drive signal applied to the electrodes on either side of the liquid crystal in the filter. An optical detector detects the intensity of light from a narrow-bandwidth input beam passed by the detector. Electrical circuitry determines the bipolar amplitude of the component of the light intensity that is at twice the frequency of the AC drive signal (the doubled-frequency amplitude) and adjusts the amplitude of the AC drive signal in response to the doubled-frequency amplitude so as to reduce the doubled-frequency amplitude toward zero.
    Type: Grant
    Filed: December 14, 1994
    Date of Patent: September 24, 1996
    Assignee: Bell Communications Research, Inc.
    Inventors: Jayantilal S. Patel, John R. Wullert, II